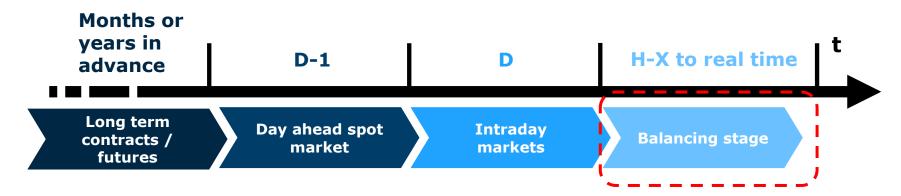


The evolution of European balancing energy markets in Europe and the activation process of Transmission System Operators

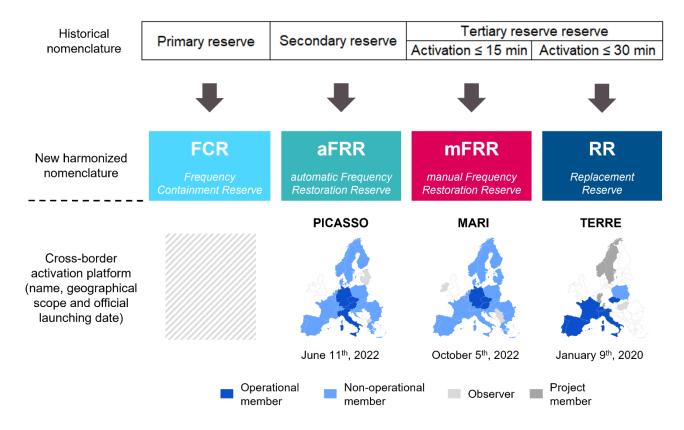
Rie

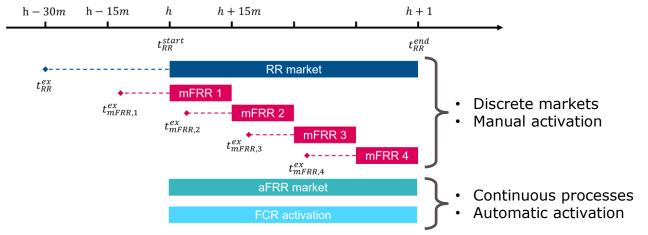
Université Paris Dauphine PSL, CEEM and RTE


Academic supervisor: Fabien ROQUES

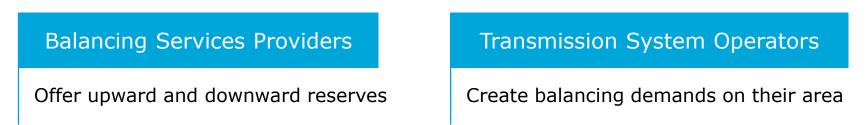
RTE supervisors : Emily LITTLE, Virginie DUSSARTRE

Florent Cogen 13/06/2024 Rte


General context: Transition from local processes to European common balancing energy markets


Historical state: Managed locally by Transmission System Operators (TSOs)

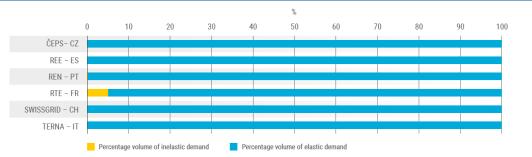
General context: Transition from local processses to European common balancing energy markets



A distinctive feature of common balancing energy markets: specific actors

Re

Bidding strategies of TSOs on balancing energy markets: a gap in the literature


Ð

- Various studies look at the bidding strategies of BSPs: for instance (Just & Weber, 2015), (Pei et al., 2016), (Ocker and Ehrhart, 2017), (Poplavskaya, Lago & De Vries, 2019), (Guo et al., 2022), or (Silva et al., 2022).
- To our knowledge, a single article focuses on TSO bidding strategies: (Haberg & Doorman, 2017). Proposes a first high-level approach for formulating RR orders based on arbitrage with the mFRR market. This article has not been further extended, and TSO demand has been modeled as

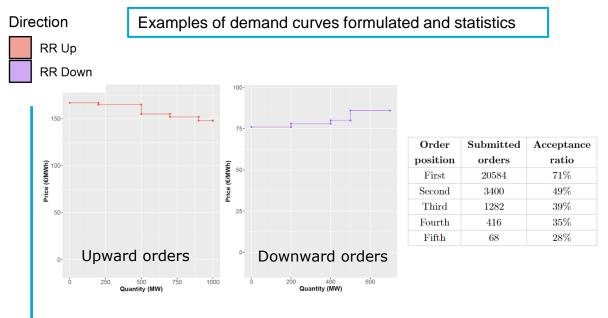
price-inelastic since then.

1) In light of recent market implementations, is it relevant to represent TSOs as price-elastic?

 Recent market reports by ENTSO-E on the actual RR markets (over 2021 and 2022) suggests so.

Context and problematic \longrightarrow Methodology \longrightarrow Results \longrightarrow Discussion

Highlighting the price-elasticity of TSOs with a empirical analysis of the RR market


Empirical analysis of RR orders formulated by the French TSO RTE over 2021 and 2022. Conducted using open access data published by RTE and ENTSO-E Transparency.

Distribution of RTE's RR orders prices

Re

RR orders prices spread between 0 and 1000 €/MWh for both directions

Confirming a price-elastic behavior

Demand curves are already been formulated in practice and have an impact on accepted volumes

6

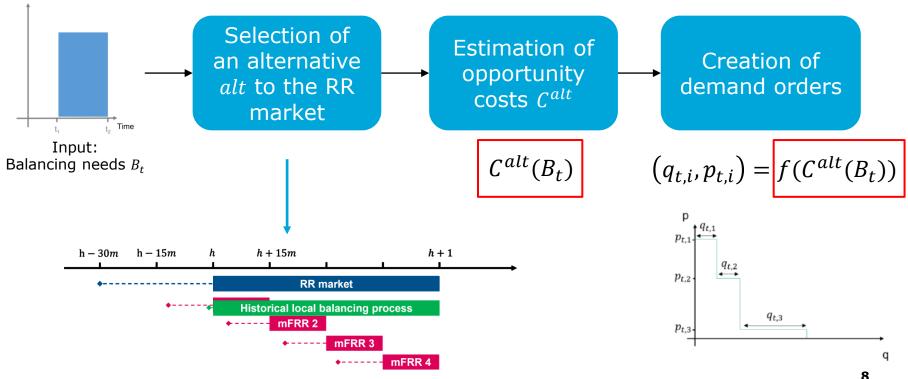
Contributions to TSO bidding strategies

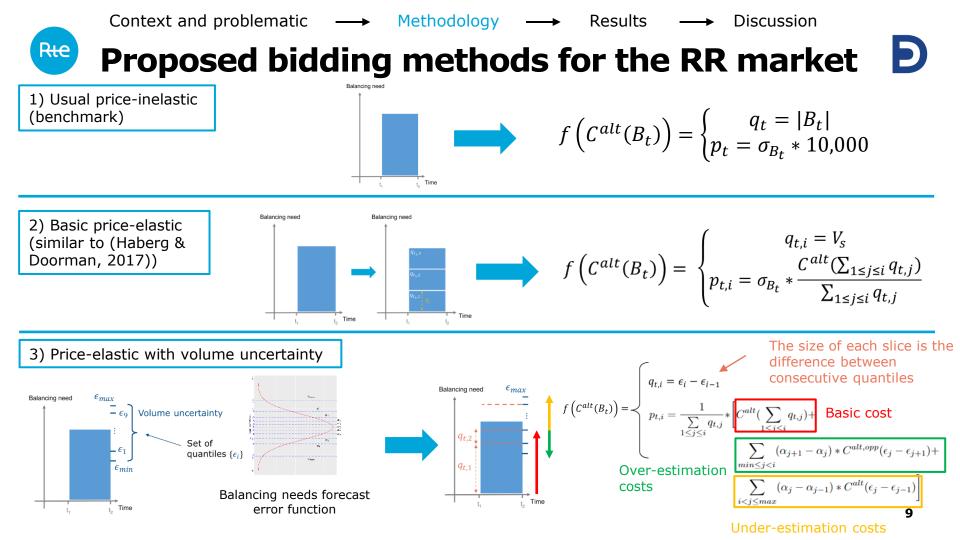
(Haberg & Doorman, 2017) identifies several « complicating issues » to be adressed, notably:

□ The existence of several categories of alternatives to the RR market

□ The uncertainty of the volume of TSO balancing needs

□ The intricacy of estimating the opportunity costs of the alternative


In addition, the article does not provide any application in a case study, to evaluate the impact of bidding strategies.

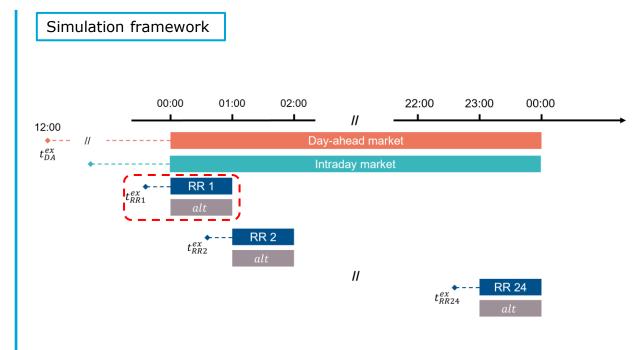

2) How can their bidding strategies be improved by building on (Haberg & Doorman, 2017), and what are their impacts in terms of balancing costs and balancing market outcomes?

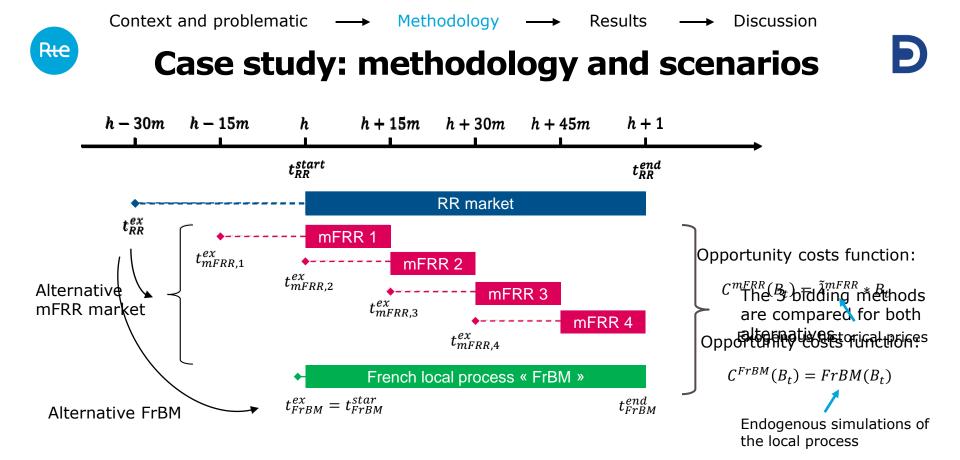
Context and problematic \longrightarrow Methodology \longrightarrow Results \longrightarrow Discussion

Overview of the proposed bidding framework of the RR market

Balancing need

Context and problematic \longrightarrow Methodology \longrightarrow Results \longrightarrow Discussion


Case study: methodology and scenarios



Input dataset

Representative 2030 European power system, based on *Energy Pathways to 2050* (RTE, 2022)

(-40% compared to the inelastic method). Notably, RR market costs are substantially reduced while FrBM costs are increased: this stragegy correctly identifies when the FrBM

Price-elastic bidding methods perform better than the price-inelastic formulation, albeit slightly for the basic price-elastic method.

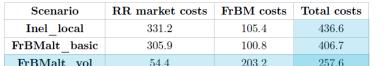
The volume uncertainty bidding method displays significant balancing costs reduction

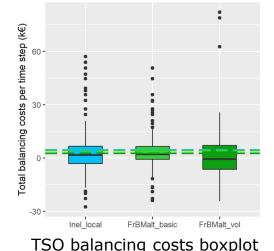
Scenario **RR** market costs FrBM costs Inel local 331.2105.4436.6FrBMalt basic 305.9100.8406.7FrBMalt vol 54.4203.2257.6

Daily TSO balancing costs (k€)

becomes a better option than the RR market.

Balancing costs computation:


Context and problematic \longrightarrow Methodology

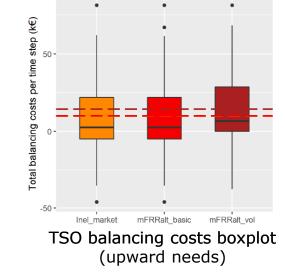

 $\forall alt \in \{FrBM, mFRR\}, \quad C^{TSO,alt} = \sum C_t^{RR} + C_t^{alt}$

Re

Case study: main results (FrBM alternative) Average balancing costs

Results

Discussion


Case study: main results (mFRR alternative)

Methodology

Scenario	nario RR market costs mFRR market costs		Total costs
Inel_market	331.2	-349.8	-18.6
$mFRRalt_basic$	329.8	-349.1	-19.1
mFRRalt vol	550.6	-423.5	127.1

Daily TSO balancing costs (k€)

The volume uncertainty method has worse performance than the others.

Linked with the **inaccuracy** of the cost estimation function for upward needs / upward mFRR prices

Context and problematic

Rte

Estimated $\tilde{\lambda}_{up}^{mFRR}$	Estimated $\tilde{\lambda}_{up}^{mFRR}$	$\sum_{n=1}^{FRR} \text{Simulated } \lambda_{up}^{mFRR} \text{Simulated } \lambda_{up}^{mFRR}$	
average	range	average	range
62.16	[42.41 - 82.72]	43	[41.22 - 52.39]

Results

Table 5.12: Accuracy of the mFRR price estimation function

Discussion

Average balancing costs

Conclusion and key takeaways

- **1) TSOs are price-elastic on actual balancing energy markets**, and their bidding strategies should be further studied.
- 2) Several types of alternatives to a given balancing product exists, based on which arbitrages can be computed.
- Including uncertainty on the volume of TSO balancing needs in the bidding formulation can yield balancing costs reductions, translating into an increase of social welfare.
- 4) An inacurrate opportunity cost estimation function can lead to worse performances, and it should be properly calibrated.

Future research avenues

• Improvements of TSO bidding methods:

- Using advanced price estimation methods in the opportunity cost computation.
- Inclusion of risk aversion associated with volume uncertainty.
- Combination of several simultaneous alternatives (e.g. mFRR market + local balancing process, or mFRR market + aFRR market).
- Improved assessment of potential effects of TSO bidding strategies and regulatory implications:
 - Impact on BSP bidding behavior and potential feedback loops.
 - Regulatory framework to avoid potential market distorsions (e.g. caused by an inaccurate TSO bidding strategy) and define strategies that reflect the balancing costs of TSOs.

Thank you for your attention

D