Designing Markets for Reliability with Incomplete Information

Leopold Monjoie

Paris Dauphine PSL University

2024 CEEM International Conference

Motivations

Question

How do we choose an allocation that induces at the same time (i) an efficient consumption and (ii) a sufficient level of investment?

- Main motivation: **Essential goods** such as electricity markets.
	- \triangleright Consumption above available capacity and when demand is not correctly rationed \rightarrow systemic costs.
- Since Boiteux (1949, 1951, 1956) and Vickrey (1963, 1969), efficient consumption and financing investments for essential goods require specific pricing mechanisms.
	- Investment as a public good

[Introduction and motivations](#page-1-0)

Electricity as the main motivation

Figure: ERCOT electricity generation by source, demand, and outages during Texas Deep Freeze [DallasFed 2023]

• **Should we simply take demand as given?**

[Introduction and motivations](#page-1-0)

Investment is both a supply-side and demand-side problem

• **Can we design electricity tariffs leading to a lower need for investment?**

This paper

- Provide a **stylized theoretical framework** where a market designer has to choose the **allocation mechanism** (in price and quantity) and **investment decisions**. We highlight the tension between:
	- \triangleright Choosing an allocation mechanism that dictates how consumption decisions are made.
	- \blacktriangleright Generating revenue to provide sufficient available capacity.

• The market designer faces **different consumers** that vary in their **level of consumption** that will be considered **private information**.

First contribution

Contribution 1

Link the design of an optimal allocation for the demand side under incomplete information with investment decisions.

• **Long-term supply side without incomplete information.**

▶ How to make investment decisions? [Boiteux, 1949], [Crew and Kleindorfer,1976], [Crew et al., 1995], [Borenstein, 2005]. How investment decisions affect short-term equilibrium? [Zöttl, 2011], [Allcott, 2012], [Léautier, 2016], [Holmberg and Ritz, 2020].

• **Short-term demand side without investment decisions**

▶ Optimal short-term pricing mechanism. [Chao and Wilson, 1987], [Chao, 2012], [Chao et al., 2022] [Spulber, 1992]. Implementation of optimal mechanism [Spulber,1992], [Spulber,1993].

Main results

Contribution 2

Provide individual welfare comparisons for consumers given (i) different environments, (ii) allocation, and (iii) investment levels.

- We derive the set of prices/quantities that maximizes aggregate consumer surplus given investment decisions
	- **Example** quantity increases for higher types and decreases for higher levels of investments with IR/IC.
- Efficient investment level and corresonding allocation are not always Pareto-improving for every consumer **= distributive issues**.
	- ▶ Electricity [Cahana et al., 2022] Electricity tarifs [Burger et al., 2020] [Levinson and Silva 2022] Transport [Hall. 2021]

Roadmap

[Environment](#page-7-0)

[Complete Information - First-Best](#page-11-0)

[Incomplete Information - Fixed price](#page-15-0)

[Incomplete Information - Mechanism Design](#page-24-0)

[Conclusion and extension](#page-33-0)

[Appendix](#page-37-0)

[Environment](#page-7-0)

Agents

Consumers

• Unit mass of consumers :

$$
u(q, \theta, s) = \overbrace{\theta + s}^{\text{agg. uncertainty}} - q
$$

• $θ$: consumer type, PDF $g_i(θ)$, CDF $G_i(θ)$, $θ \sim U[*θ*_i, *θ̄*_i]$. ¯

 \triangleright i \in 1, 2: category of consumers with $\mu_i > 0$ consumers in group i.

- s: common shock, CI, PDF f(s), CDF F(s), s ~ U[0, \overline{s}].
- With demand $d(t, \theta, s)$ and utility $U(q, \theta, s) = \int_0^q u(q, \theta, s) dq$
- Category 1 is "bigger" than Category 2: $\mu_1\theta_1^{av} > \mu_2\theta_2^{av}$.

Timing - Production

Roadmap

[Environment](#page-7-0)

[Complete Information - First-Best](#page-11-0)

[Incomplete Information - Fixed price](#page-15-0)

[Incomplete Information - Mechanism Design](#page-24-0)

[Conclusion and extension](#page-33-0)

[Appendix](#page-37-0)

Market designer - objective

The market designer looks for every allocation for each consumer and the level of investment that maximizes expected consumer surplus.

$$
\max_{\substack{t_i^*(\theta,s)\to\mathbb{R}^+,\,\\ \mathfrak{q}_i^*(\theta,s)\to\mathbb{R}^+,\,\\k\geq 0}} \sum_i \mu_i \int_s \int_{\theta_i} U(\theta,\mathfrak{q}_i^*(\theta,s),s) - t_i^*(\theta,s) \mathfrak{q}_i^*(\theta,s) dG_i(\theta) dF(s)
$$

$$
\text{s.t.} \qquad I(k) \ = \ \sum_i \mu_i \int_s \int_{\theta_i} t_i^*(\theta, s) q_i^*(\theta, s) dG_i(\theta) dF(s), \tag{R}
$$

$$
\sum_{i} \mu_{i} \int_{\theta_{i}} q_{i}^{*}(\theta, s) dG_{i}(\theta) \leq k,
$$
\n(K)

First-best allocation mechanism - spot market

Proposition

(i) Optimal allocation for each s:

 $t^*(k,s) = \begin{cases} 0 & \text{if} \quad s \in [0,s_1(k)) \end{cases}$ $p(k, s)$ if $s \in [s_1(k), \overline{s}]$ **single price** marginal cost

aggregate demand s.t. $D(p(k, s), s) = k$

$$
q_i^*(k, \theta, s) = \begin{cases} d(0, \theta, s) & \text{if } s \in [0, s_1(k)) \\ d(p(k, s), \theta, s) & \text{if } s \in [s_1(k), \overline{s}] \end{cases}
$$

(ii) Optimal mechanism design can be implemented by spot market.

Long-term vs short-term allocation

Figure: Surplus-maximizing allocations

Roadmap

[Environment](#page-7-0)

[Complete Information - First-Best](#page-11-0)

[Incomplete Information - Fixed price](#page-15-0)

[Incomplete Information - Mechanism Design](#page-24-0)

[Conclusion and extension](#page-33-0)

[Appendix](#page-37-0)

Second-Best 2: current market design

- Consumers' type is **private information**.
- The market designer **cannot extract any information**.
- The market designer can only set a **fixed and unique price per category**.Third-degree price discrimination
- Consumers adjust their consumption.

Rationing policy

- Fixed-price + K Constraint + Incomplete Info. : **Inefficient rationing**.
- Given tù:

If Demand(t) K , no intervention (but welfare loss due to fixed prices).

If Demand(t) $>$ K, **random allocation** within each group.

• **Main ingredients**: Group Discrimination + Asymmetry between off-peak and on-peak periods.

Proposition - main result

Proposition

Suppose that category 1 is bigger than category 2 and investment cost is not too high, then:

- $t_1^r(k)$ is increasing with k
- $t_2^r(k)$ is first decreasing, then increasing with k.

Proposition - main result

Figure: Evolution of optimal prices t_i^r with respect to investment level k

Intuitions

• Consumer surplus effect:

▶ Preference for lower prices: $t_i^r \downarrow$

▶ Preference for discrimination of lower types: $t_1' \downarrow t_2' \uparrow$

• Revenue effect:

Preference for higher prices: t_i^r \uparrow

▶ Preference for discrimination of higher types: $t_1^r \uparrow t_2^r \downarrow$

Consumer vs revenue effect with respect to k

• Net effect:

- **In Consumer effect** $>$ Revenue effect for low values of k
- \blacktriangleright Consumer effect \lt Revenue effect for high values of k

• Marginal CS decreases in k because the capacity binds less often.

• Revenue is more constraining with high values of k .

Revenue effect implies increasing prices and $t_2 > t_1$

Figure: Evolution of optimal prices t_i^r with respect to investment level k

Increasing capacity decreases the M.R.S.

Figure: Evolution of the optimal prices given a fixed hypothetical revenue constraint

Roadmap

[Environment](#page-7-0)

[Complete Information - First-Best](#page-11-0)

[Incomplete Information - Fixed price](#page-15-0)

[Incomplete Information - Mechanism Design](#page-24-0)

[Conclusion and extension](#page-33-0)

[Appendix](#page-37-0)

Second-best 3: theoretical upper bound

- We make three assumptions:
	- \triangleright Consumers' type is private information.
	- **In The market designer can extract consumer information (Revelation**) Principle).
	- **If The market designer ask consumers to report their type** θ **, then assign** quantity $q_i(\theta, s)$ and charge $t_i(\theta, s)$.

Market designer - objective

$$
\max_{\substack{t_i^m(\theta,s)\to\mathbb{R}^+,\atop \mathcal{q}_i^m(\theta,s)\to\mathbb{R}^+,\atop k\geq 0}} \sum_i \mu_i \int_s \int_{\theta_i} U(q_i^m(\theta,s),\theta,s) - t_i^m(\theta,s)q_i^m(\theta,s) dG_i(\theta) dF(s)
$$

 (K)

(R)

$$
0\leq \int_{s} U(q_i^m(\theta,s),\theta,s) - t_i^m(\theta,s)q_i^m(\theta,s) dF(s) \qquad (IR)
$$

$$
\theta = \arg \max_{\tilde{\theta}} \int_{s} U(q_i^m(\hat{\theta}, s), \theta, s) - t_i^m(\hat{\theta}, s) q_i^m(\hat{\theta}, s) dF(s) \qquad (IC)
$$

First result

Figure: Change in the R-RI constraint with respect to investment level.

Second result

The effect of k **on the individual optimal allocation depends on the consumer's type.**

Proposition

- (Optimal off-peak) i*,*3 is always decreasing with k for every values of k and for every type.
- (Optimal on-peak) if

▶
$$
J_{i,4}
$$
 > $\mathbb{E} J_4 - \frac{1}{\mathbb{B}}$ $q_{i,4}^m$ is always increasing with k .
\n▶ $J_{i,4}$ < $\mathbb{E} J_4 - \frac{1}{\mathbb{B}}$ $q_{i,4}^m$ is always decreasing with k .

With $\mathbb{E}J_{4}=\sum_{i}\mu_{i}\int_{\theta_{i}}J_{i,4}dG_{i}(\theta),$ the expected virtual marginal utility across all types and categories. B encompasses aggregate consumer surplus and revenue effect.

Illustration

Figure: Optimal on-peak allocation for different consumers with respect to k

On-peak quantities

$$
\frac{\partial q_{i,4}^m}{\partial k} = \begin{bmatrix} \frac{\partial \gamma}{\partial k} \end{bmatrix} \begin{bmatrix} J_{i,4}(q_{i,4}^m) \\ J_{i,4}(q_{i,4}^m) \end{bmatrix} - \begin{bmatrix} \frac{\partial \varepsilon}{\partial k} \\ \frac{\partial \varepsilon}{\partial k} \end{bmatrix} \begin{bmatrix} \frac{1}{1+\gamma} \\ \frac{1}{1+\gamma} \end{bmatrix}
$$

• **Capacity effect**: Adding k always makes the capacity less binding: *∂ε [∂]*^k *<* 0

- IC effect ambiguous : $J_{i,4}(q_{i,4}^m) \leq 0$
	- **D** case (1): If virtual utility > 0 , then the effect of k is positive. increasing quantity both allows more surplus and to finance the investment.
	- ▶ case (2): If ϵ < virtual utility < 0, then the positive effect of $k >$ IC
	- ▶ case (3): If virtual utility $\lt \epsilon \lt 0$, it is too costly to make consumers tell the truth and finance investment.

From quantity to welfare

Consumer surplus is the information rent:

$$
CS^m(\theta,s)=\int_s\int_{\bar{\theta}}^{\theta}q_i(\hat{\theta},s)dF(s)d\hat{\theta}
$$

How the information rent changes with respect to k gives the individual welfare:

$$
\frac{\partial CS^m}{\partial k} = \int_0^{s^m(k)} \underbrace{\int_{\tilde{\theta}}^{\theta} \frac{\partial q_{i,3}^m}{\partial k} d\hat{\theta}}_{\text{off-park information rent } < 0} dF(s) + \int_{s^m(k)}^{\tilde{s}} \underbrace{\int_{\tilde{\theta}}^{\theta} \frac{\partial q_{i,4}^m}{\partial k} d\hat{\theta}}_{\text{on-pek information rent } \geq 0} dF(s)
$$

Implication for the welfare

Roadmap

[Environment](#page-7-0)

[Complete Information - First-Best](#page-11-0)

[Incomplete Information - Fixed price](#page-15-0)

[Incomplete Information - Mechanism Design](#page-24-0)

[Conclusion and extension](#page-33-0)

[Appendix](#page-37-0)

Conclusion

We build a framework unifying surplus-maximizing investment decisions with optimal short-term allocations under incomplete information.

Under a set of constraints, we described the pair of quantity and prices that a market designer should implement and the consequences in terms of investment level.

(i) revenue constraints (ii) implementation constraints, and (iii) heterogeneity between consumers implies non-intuitive relationship between the short-term mechanism and investment level.

Extensions

I - We derive the current second-best and the theoretical second-best, representing a market designer's lower and upper bound in terms of possible mechanisms.

How do some practical contractual frameworks (ie. long-term arrangements) that allow consumers to partially reveal information to the market designer behave with respect to the two boundaries?

II - In a framework with some redistributive preferences, the non-monotonicity of the allocations could contradict the optimal policies.

How does redistributive preferences changes the optimal allocation mechanism?

Thank you !

http://leopoldmonjoie.com/

Roadmap

[Environment](#page-7-0)

[Complete Information - First-Best](#page-11-0)

[Incomplete Information - Fixed price](#page-15-0)

[Incomplete Information - Mechanism Design](#page-24-0)

[Conclusion and extension](#page-33-0)

[Appendix](#page-37-0)

[Appendix](#page-37-0)

Three results: the second-best investment level

- No information constraint $=$ spot market quantity $=$ first-best
- With information constraint $=$ second-best

Surplus Effect Off Peak -

$$
\sum_i \mu_i \int_0^{s^m(k)} \int_{\theta_i} \int_0^{\theta_i} \frac{\partial q^m_{i,3}}{\partial k} d\theta dG_i(\theta) dF(s) \Bigg| =
$$

$$
\left| \sum_i \mu_i \int_{s^m(k)}^{\bar{s}} \int_{\theta_i} \int_0^{\theta_i} \frac{\partial q^m_{i,4}}{\partial k} d\theta dG_i(\theta) dF(s) \right|
$$

Surplus Effect On Peak +

[Appendix](#page-37-0)

But do we consume efficiently ?

Figure: Personal consumption (https://app.lite.eco/ecoscan)

Contribution

- Endogenize the market designer preference for revenue from [Akbarpour, Dworczak, and Kominers, 2023], [Akbarpour et al., 2023].
- Mechanism design for public-good [Myerson and Satterthwaite, 1983].
- Triple IO [Kan, 2023][Muir, 2023].
- This framework is particularly fit for electricity, but it can be extended to essential goods:
	- **Medical supplies**: contagion [Fabra et al., 2020] [Cramton, 2020]
	- **Supply chain**: network failure [Elliot et al., 2021].

\blacktriangleright [back](#page-5-0)

[Appendix](#page-37-0)

Example of s

 \rightarrow [back](#page-10-0)

Revenue maximizing prices

 \rightarrow [back](#page-0-0)