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Abstract

Decarbonization of energy systems is challenging but needs to happen. Despite a rich lit-
erature on energy transitions and electricity markets, there is a scant literature analyzing
(1) how an energy-only market (EOM) design may yield energy mix trajectories that are
compatible with decarbonization objectives and (2) the role of underlying investor behavior
assumptions. This paper intends to bridge this gap and illustrate both aspects through elec-
tricity market model simulations. We study an illustrative case inspired by the Californian
power system and highlight twomain findings. First, an EOM complementedwith a carbon
price signal can reproduce the optimalmix trajectory but required assumptions are demand-
ing and unrealistic (e.g. perfect rationality, full information about fundamentals, perfect co-
ordination between decommissioning and investment decisions). Second, we characterize
how the EOM-induced mix trajectory can considerably deviate from optimality when we
relax these assumptions. We conclude that the desirable theoretical properties of an EOM
are not robust to practical investor behaviors. Meeting decarbonization targets thus calls
for a change in market design paradigm toward hybrid markets that combine a dedicated
long-term investment module with short-term wholesale markets as we know them today.
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I. INTRODUCTION

The energy transition has become a common trend over the world and poses mounting
challenges to energy systems with various interrelated facets including decarboniza-
tion, renewables integration, energy efficiency improvement and electrification. In
practice, these aspirations translate in more or less binding targets for different time
horizons. In the EU for instance, key targets for 2030 are to cut greenhouse gas (GHG)
emissions by at least 55%below 1990 levels and the longer-termvision aims at themuch
more ambitious objective of a net-zero GHG emissions economy by 2050 [7]. The US
state of California is another example of ambitious energy transition objectives where
the Senate Bill 100 requires 60% and 100% of electric retail sales to end-use customers
to be zero-carbon by 2030 and 2045 respectively [4].

In the electricity sector, decarbonization prospective analysis mostly resorts to gener-
ation expansion models (GEP) which cost-optimize over time to determine efficient
pathways that reach given end-point targets. There is a rich literature discussing the
underlying optimization techniques and technological assumptions (e.g. integration of
renewable energy sources, representation of short-term issues, long-term seasonal stor-
age) behind such analyses such as Shirizadeh et al. [20] and Tejada-Arango et al. [22].
Yet, they are to a large extent oblivious to market design and agent behavior issues,
i.e. economic and behavioral factors that have a bearing on investment decisions [e.g.
21]. This blind spot becomes a particularly salient shortcoming in a context of growing
concerns about the ability of current institutional framework andmarket design choices
to meet deep decarbonization and security of supply objectives that necessitate pro-
found changes in power system structures and technology mixes [e.g. 18, 12, 9, 11, 17].

Specifically, an increasing number of voices have been raised to claim that the energy-
only market (EOM) model1, which is held up as the target market design model in
many jurisdictions including the EU, is structurally ill-equipped to support adequate
investments to deliver on these objectives. These analyses show that the EOM rests on
idealistic assumptions about market functioning and behavior (e.g. complete markets,
perfect rationality) that do not hold in practice and is subject to several externalities
(e.g. learning spillovers, social or industrial preferences, pollution). Additionally, exist-
ing corrective policies andmarket design patches fall short of ensuring that targets will
be met as economically as possible and on schedule, notably for lack of systemwide co-
ordination. Crucially, the literature offers limited qualitative and quantitative insights
on the role of investor behavior and associated modeling assumptions in this situation.

In this paper, we seek to partially fill this gap in the literature and quantitatively illu-
minate two related aspects in the case of a pure EOM design. First, we explore which
behavioral and informational assumptions are needed to ensure that the resulting in-
vestment decisions alignwith the optimalmix trajectory, i.e. that which achieves decar-
bonization objectives at least overall cost. We find these assumptions to be demanding

1The traditional energy-only market terminology used in the literature can sometimes be misleading
as it may include markets for ancillary services. In this paper, this is how we refer to market designs
exclusively based on short-term wholesale markets.
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and unrealistic, which underpins the diagnosis that the purported EOM properties fail
to materialize in practice. Second, we characterize the robustness of the EOM-induced
mix trajectory to these assumptions by relaxing them gradually. We find that substan-
tial deviations from the optimal one can occur when investors exhibit limited sophis-
tication in making adequate projections for future states of the world (e.g. CO2 price,
installed asset fleet) that govern expected market prices, revenue streams and in turn
investment profitability.

To embed these issues at the core of our analysis, we develop an electricity market
model based on System Dynamics (SD). Such an approach allows for the incorporation
of a variety of behavioral factors in the investment-closure decision-making process of
a representative agent [e.g. 26, 16, 14, 21]. Importantly, we also build a bridge with the
traditional GEP modeling approach whose output we use as a benchmark for the SD
model simulation results and as a possible source of information when investors make
projections in the SD model.

The remainder proceeds as follows. Section 2. lays out the modeling framework with a
strong focus on the SD market model. Section 3. describes the case study, the underly-
ing assumptions and the reference optimal trajectory obtained with the GEP approach.
Section 4. presents and discusses the simulation results from the SD market model.
Finally, section 5. concludes and offers important implications for policy and market
design.

II. METHODOLOGY

2.1. Modeling framework

For decades, economists and engineers have used a rich toolbox of complementary
approaches to gain understanding on long-term power system issues . The different
modeling options are generally classified into three categories, namely optimization,
equilibrium, and simulation models [25, 21] with distinct and complementary areas of
relevance. In this paper, we choose to develop a modeling framework consisting of
two models2:

1. A System Dynamics (SD) model similar to Petitet et al. [16] which is a tool that
aims at simulating industry representative agents’ decisions and operations.

2. An optimization model in the form of a traditional Generation Expansion Plan-
ning (GEP) model (see Kagiannas et al. [10] for historical perspective). The goal
of this class of model is to determine the optimal capacity development plan by
jointly minimizing investment and operating costs with respect to a variety of
constraints. Alongside usual ones, one notable constraint is a cap on CO2 emis-
sions detailed in section II.22..

The choice of System Dynamics is first motivated by the necessity to focus on decision-
making process by considering explicit assumptions for investors’ rationality and fore-

2The twomodels presented herafter were developed in the open-source coding language Python and
can be reproduced based on the equations and descriptions provided in the article.
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cast evolving in a certain market environment. Both optimization and equilibrium
models fail to represent these aspects. The first category does not represent any agent
nor market and the latter relies on solvers and thus does not explicitly exhibit the dy-
namic decision-making process and fail to cover common out of equilibrium situations.
Useful review of SD models for power systems are found in Teufel et al. [23] and Ah-
mad et al. [1]. Among simulation models, agent-basedmodeling and system dynamics
are generally considered as the two main sub approaches, although their definition
and perimeter may differ from one to another. As well as SD, agent-based modeling
has been applied to power system and is particularly well-suited to analysis hetero-
geneous behaviors among market participants. dos Santos and Saraiva [19] provide a
latest review of agent-based modeling applied to power systems. This article focuses
on identifying investor’s behaviors and assumptions that are necessary to obtain mix
trajectory in coherencewith energy-onlymarket paradigm. It does not aim at analysing
heterogeneous investors. This explains why SD appears as the relevant modeling ap-
proach for our purpose. This part of our modeling exercise is in continuation with
the SD literature initiated in the 1990s (see Bunn and Dyner [2]) and that still provides
useful insights in the context of energy transition (see Ousman Abani et al. [14]).

Moreover, several considerations led us to expand our modeling exercise with a GEP
model. The primary motivation is to use this second model to compute the optimal in-
vestment and retirement trajectories regardless ofmarket considerations3. This optimal
solution constitutes a benchmark to assess the outcome of our SD simulation model.

Then, we also built a linkage between the two models by feeding the SD model with
different information from the GEP model. Firstly, as the carbon market functioning is
not within the scope of this paper, the shadow price of the constraint on CO2 emissions
is used as an exogenous carbon price signal for the SD model. Secondly, as detailed
in Tao et al. [21], simulation models are very sensitive to price projection methods and
in particular to the way future capacities are projected in the case of a virtual market
clearing. To this end, the SD model can possibly use some information from the opti-
mal trajectory, especially concerning future investment or retirement decisions. Section
II.33. provides more details on these modeling assumptions.

Before diving deeper into the implementation of the twomodels, the end of this section
will provide some general assumptions of our modeling framework. First, the exercise
covers a typical time horizon of 25 years with an hourly resolution (8760 hours per
year). We consider one representative scenario for each year with respect to weather
conditions. We represent an isolated power system which we assume to be a copper
plate. We focus onwholesale electricitymarket (ancillary services are not in our scope).
The generating fleet is modelled by discrete units with standard capacities.

Abbreviations and notations are exposed in tables 1 and 2. They are shared in the
GEP and SD sections. In case of ambiguities, superscript ⋆ will refer to the GEP and
superscript ◦ to the SD. For greater clarity, we occasionally use a condensed notation
where, for example, q denotes the vector of all qt,n,h.

3The results of linear/convex GEPmodels can be interpreted as the outcome of a market equilibrium
in a perfectly competitive configuration with fully rational and informed agents. However, markets are
not explicitly represented.
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Energy-Only Market SimulationGeneration Expansion Planning

Common dataset
Existing �eet

Fixed and variable costs (current and projected)
Load (current and projected)

Optimal trajectory Simulated trajectory

(System Dynamics)

CO2 price
Futur optimal decisions

CO2 emissions targets

Figure 1: Overview of the modeling framework

CCGT Combined Cycle Gas Turbine
CHP Combined Heat and Power
EOM Energy-Only Market
GEP Generation Expansion Planning
NPV Net Present Value
O&M Operating and Maintenance
RES Renewable Energy Source
RPS Renewable Portfolio Standard
SD System Dynamics
VoLL Value of Loss Load
WACC Weighted Average Cost of Capital

Table 1: Abbreviations

2.2. GEP model

The GEP model is a traditional deterministic multi-annual cost-minimization problem
where the objective function is made up of both operating costs and investment costs
with decision variables consequently pertaining to operations on one side and invested
and retired capacities on the other side. All equations are provided in appendix A.11..
Wewill highlight a few features of interest for this study in the remainder of this section.
First, the GEP model can invest and divest in three types of technology with dedicated
modeling objects:

1. Conventional dispatchable units characterised by a variable cost of generating
electricity and an availability profile. For sake of simplicity, dynamic generation
constraints are not represented.

2. Variable renewables which have an hourly capacity factor and zero variable cost.
3. Short-term storage units which have a power and an energy components linked

by a duration parameter and a round-trip efficiency. These technologies aremod-
elled in a deterministic way (dispatched over the different time steps thanks to
perfect foresight).
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Sets, indices and set-related notations

h ∈ H set of hours in a year
y ∈ Y set of years
g ∈ G conventional dispatch technologies
v ∈ V variable renewable energy technologies
s ∈ S storage technologies
T = G ∪ V ∪ S set of all technologies (indexed t)
u ∈ Ut set of units of a certain technology
# Number of elements in a set

Parameters and variables

∆ time step duration (i.e. one hour)
Dy,h Load in year y at hour h [MW]
γ Discount factor
λy,h Marginal cost of electricity [USD/MWh]
OCy,t Annual fixed O&M cost [$/MW/Yr]
ICy,t Investment cost annuity [$/MW/Yr]
V Cy,t Generating cost [$/MWh]
ρt Carbon intensity [tCO2/MWh]
Qy CO2 emissions target [tCO2]
ℓt Lifespan [Yr]
Lu Year of initially scheduled closure
PCO2
y Carbon price [$/tCO2]

ny,t Number of operating units
n+
y,t Number of developed units

n−
y,t Number of closed units

αt,h Hourly availability [%]
kt Power capacity [MW/unit]
qt,y,h Production [MW]
cs,y,h Power charged into storage units [MW]
socs,y,h State of Charge of storage units [MWh]
ρs Charging and discharging efficiency [%]
ds Storage duration [hours]
fy,h Lost Load [MW]
V oLL Value of Lost Load [$/MWh]

Table 2: Modeling notations
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Each technology is represented by homogeneous units (i.e. the decision variables are
expressed in terms of number of units).

Second, with respect to long term decisions (investments and retirements), technolo-
gies can be either fully exogenous (installed capacity trajectory is an input), partially
endogenous (initial capacity is an input, new investments are not allowed but economic
retirements are) or fully endogenous (investments and retirements are both allowed).
Finally, the GEP model features CO2 constraints in the forms of an upper limit on an-
nual emissions to which each technology can contribute trough a carbon intensity pa-
rameter. The dual variable of this constraint (shadow price) is interpreted as the opti-
mal carbon price to reduce emissions accordingly to the trajectory fixed as input, and
is used to feed the SD market model.

2.3. System Dynamics market model

2.3.1. Overview
The SD model focuses on representing investors’ behavior and does not aim at pro-
viding the optimal mix trajectory. It simulates new investments and decommissioning
decisions in electricity generation units over several decades. Decisions are obtained
endogenously each year of the simulation based on estimated profitability of various
projects for a range of anticipated future patterns. It can also model investors with risk
aversion, whichdiffer by the criterion based onwhich their investment/decommissioning
decisions are made. An algorithmic overview of the model is provided in Algorithm
1. The SD causal-loop diagram is also presented in Figure 2. Our SD market model is
made of fourmainmodules: the energy pricemodule (briefly detailed hereafter) which
takes assumptions from the anticipation module (presented in subsection 2.3.22.), the
investment module (presented in subsection 2.3.33.) and the decommissioning mod-
ule (presented in subsection 2.3.44.). Note that the investment and decommissioning
modules are executed sequentially for each simulated year, as presented in Algorithm
1.

Regarding market design representation, this version of the SD model corresponds to
the EOM paradigm: the economic assessment is done by anticipating future market
conditionswith a projected short-termdispatch implemented trough a cost-minimization
problem. This implies that short-term operations are supposed to be perfectly compet-
itive. We also assume that the price cap is matching the consumers’ opportunity cost of
not being served (in other words, the Value of Loss Load (VoLL)). With this configura-
tion and without representing behavioral bias such as risk aversion, no missing money
issue should be present and a capacity mechanism is not necessary. We therefore do
not represent any mechanism of this kind in the model. Our goal is to analyse condi-
tions required to obtained optimal mix trajectory from the EOM design, and thus this
should be done within a modeling framework of perfect EOM marked design with an
energy price that can jump to the VoLL.

As explained before, the CO2 market is not within the scope of our SD market model.
We use an exogenous CO2 price that corresponds to the CO2 price from the GEPmodel,
but we do not endogenously represent its price formation.
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Long-term assumptions
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and

risk analysis
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Variable costs

Current

and

Anticipated

Energy market
(short-term dispatch)

Figure 2: Causal-loop diagram of the SD model

2.3.2. Focus on anticipation

In order to perform their investment decisions, investors need to anticipate relevant fu-
ture market situations. Future anticipations requires both exogenous parameters (e.g.
demand, fuel and carbon costs) but also endogenous variables such as the projected
capacity mix. As highlighted by Tao et al. [21], the latter is of prime importance. When
using multi-annual optimization models such as the GEP model exposed in section
II.22., the formulated problem is processed by a numerical solver that provides opti-
mal values for all decision variables at once. However, one specific purpose of the SD
model is to detail every decision explicitly and chronologically.
Our SD model can accommodate three different options regarding anticipation of in-
vestment/decommissioning decisions that will occur in the future. Figure 3 illustrates
the three options.

Option A [no anticipation]: The first and simplest option is to not consider any
subsequent decisions: for a given year, existing units are projected in the future until
they reach their lifespan and retire, without any further projected investments or early
economic retirements. This is done endogenously in the SD market model without the
need for any exogenous assumptions.
The two following options B and C are based on an anticipation of future decisions,
and thus require exogenous assumptions of investment and decommissioning deci-
sions for each year. Options B and C differ by the way to deal with deviations from the
exogenous mix trajectory.

Option B [anticipating initial pace]: Only the future pace of investments and
retirements from the exogenous trajectory is considered. In others words, anticipated
capacities are obtained in a given year by virtually adding future investments and re-
tirements of the exogenous trajectory to the system current state.
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Algorithm 1: SD market simulator
Result: Vector of simulated n, n+, n−, q, f, c
for y ∈ Y do

# disinvestment sequence
Remove all units reaching the end of their lifespan
Build anticipation for the disinvestment sequence
continue = True
while continue do

Compute net revenuesRy,u in current year for all existing units of
technologies eligible for decommissioning. IfRy,u < 0, compute NPV deco.

u,y

too.
if min(NPV deco.

•y ) < 0 then
Remove unit u corresponding to the minimum NPV

else
continue = False

end
end
# investment sequence
Build anticipation for the investment sequence
while continue do

Compute NPV invest.
t of a new project for each technology candidate for

investment.
if max(NPV invest.

• ) ≥ 0 then
Add one unit of technology x corresponding to the maximum NPV

else
continue = False

end
end

end

Option C [anticipating with perfect catch up]: Future paces are updated so that
they always try to catch up with the exogenous trajectory in case of a deviation. It
may not always be feasible – e.g. when a technology only eligible for decommissioning
already had toomuch retirements, it is not possible to re-invest – but the representative
agent anticipates the closest possible trajectory as illustrated in Figure 3.

For each year, the sequential implementation of the disinvestment sequence (executed
first) and the investment sequence (executed as a second step) led us to add one mod-
eling assumption. Indeed, the three options described above are relative to future de-
cisions, i.e. in the years following the year for which investment and retirements are
being decided. However, this sequential setup induces the need to discuss if invest-
ment decisions of the current year are foreseen in the disinvestment module or not.
This is translated in an optional parameter to decide if this is the case, and if so, what
assumption is made regarding anticipated capacities (i.e. initial pace vs. perfect catch
up).

As a final remark, we highlight that the exogenous reference trajectory required in op-
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tions B and C can typically be the optimal ones computed by the GEP model but they
may also be altered for study needs.

2026 2028 2030 2032 2034 2036 2038 2040 2042 2044

Year

5

10

15

20

G
W

Anticipated

→

Peaker capacity

Optimal trajectory

Current simulated capacity

No anticipation of future decisions

Initial pace projection

Perfect catch up

Figure 3: Anticipating future decisions in the SD model

2.3.3. Investment sequence

In the investment sequence, the value of a new project is assessed for each candidate
technology. To do so, we explicitly consider how the addition of a new project of a
given technology would impact future energy prices. In other words, we adjust as-
sumptions from the anticipation module by adding one generation unit and then, the
short term market module is virtually run over all the anticipated year to estimate fu-
ture energy prices (λ) and hourly volumes of energy (q) produced by each units. The
model then computes energy revenues of the considered generation unit based on fu-
ture energy prices and hourly generation dispatch, for every anticipated future sce-
nario. The anticipation horizon onwhich revenues are estimated can correspond to the
entire lifetime of the project or can also be reduced on purpose to represent myopia of
agents. Myopia issue is not addressed in this paper and thus all our simulations con-
sider the maximum available look-ahead horizon to assess economic value of projects.

The SD market model embeds several economic metrics to compare candidate tech-
nologies and to base investment decisions. In this paper, simulations are carried out
with the classical Net Present Value (NPV), expressed relatively to one additional MW
of installed capacity.4 Equation 1 details the NPV formula used to this purpose, with y
being the current year in the simulation and t the considered candidate technology.

NPVt,y =

min(#Y,Lu)∑
k=y

γk
∑
h∈H

(
qt,k,h
nk,tkt

(λk,h − V Ck,t)−OCk,t − ICk,t

)
(1)

This NPV formulation is a little bit altered compared with textbooks since it does not
assess the value of the project on its whole lifetime but only on the part covered by
the study horizon. This approach, also used by Tao et al. [21], has two benefits: (1) it is

4The profitability index (i.e. the ratio between the NPV of the project and its investment cost) and the
internal rate of return are two other economic metrics embedded in our SD market model
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consistentwith theGEP approach that only sums annualized and discounted costs over
this same period and (2) it avoids making hazardous choices on the value of projects
beyond the end of the study horizon.

Sensitivity tests were conducted with the profitability index and results presented be-
low are robust to the investment-decision metrics.

Once the investment metric is computed for each candidate technology, all profitable
projects (in our case, profitable means having a positive NPV) are ranked and the one
that produces the greatest investment return is selected and one unit is being invested
in. This investment decision is then taken into account and is added to the fleet. The
investment sequence proceeds by sequential loops and is terminated when no more
profitable investment project is detected.

2.3.4. Decommissioning sequence

The decommissioning sequence will assess the net revenue Ru,n for each existing unit
eligible for decommissioning in the current year. It consists in themargin earned on the
energymarket minus fixed O&M costs as detailed in equation 2). Note that CAPEX are
not considered in this assessment because they are already engaged and can no longer
be saved (sunk costs).

Rt,y =
∑
h∈H

(
qt,y,h
ny,tkt

(λy,h − V Cy,t)

)
−OCy,t (2)

For all units experiencing losses in the current year y (i.e. Rt,y < 0), a complete assess-
ment is made from the current year y to its initially scheduled closure or at the end of
an anticipation horizon (equation 3)5.

NPV deco.
u,y =

min(#Y,Lu)∑
k=y

γkRu,k (3)

Whendifferent technologies have a negativeNPV deco., the unit that generates the great-
est losses is first retired. The decommissioning sequence is repeated and ends when no
technology has a negative NPV deco..

III. CASE STUDY

Our case study represents the evolution of a stylised system inspired by the Californian
power system between 2025 and 2045. Most of our assumptions come from the 2019-
2020 Integrated Resource Planning (IRP) exercise from the California Public Utilities
Commission (CPUC) 6. The three main features that make this case interesting and

5The time horizon can also be reduced to take into account investors’ myopia
6We used the ”30MMT_base_20191001_2045” scenario.
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insightful are:

• A grid demand stagnating up to 2030 followed by a strong increase pushed by
electrification although moderated by decentralized solar generation.

• A strong commitment to drastically reduce GHG.
• An existing fleet including a substantial share of gas-fired dispatchable technolo-
gies and investment candidates consisting of non-dispatchable renewable energy
sources alongside storage solutions. In the CPUC scenariowe used as a reference,
massive developments are expected for solar and storage while a certain amount
of the gas fleet will retire economically before the end of its lifespan.

As regards market design, we consider the EOMwith price that can jump to the VoLL,
completedwith an exogenous carbon price that drives decarbonization. Our case study
is an illustrative power system to draw broad features, but it is by no means a prospec-
tive exercise for California. In that sense, the market design layer of our case study
diverges significantly from the real market design in California7.

For sake of simplicity, our illustrative power system is considered as isolated (no inter-
connections) and the internal electricity network is not represented (copper plate). The
modeling framework could be extended to an interconnected situation but at an im-
portant computational cost and would require further methodological developments.

3.1. Dataset overview

The dataset is adapted from three data sources: the 2019-2020 IRP study from theCPUC
[5], Ninja Renewables [13] and historical data from CAISO [3].

First, we consider an exogenous gross load slightly increasing up to 2030 (0.4% p.a.)
before taking off (2.3% p.a.) for the rest of the study horizon. A growing amount of
decentralized solar generation is subtracted from the gross load (+2TWh p.a., starting
from 28 TWh in 2030). The annual targets here exposed are converted into hourly time
series by scaling the 2019 historical gross load and a distributed generation time series
from Ninja Renewable.

On the supply side, wemodel four endogenous technologies in terms of investment and
retirement decisions completed by a set of exogenous generating technologies. Data
relative to endogenous technologies are exposed in table 3. Note that they are divided
into two groupswith respect to available decisions: (1) a first groupmade up of existing
fossil-fired dispatchable technologies and (2) a second group of technologies candidate
for investment made up of solar generation and a storage technology. PV and storage
assets are available for investment with no build time, i.e. they are build and start to
generate electricity on the same year of the investment decision. The storage technol-
ogy that we considered is generic and congruent with a Li-ion 4 hours Battery Energy
Storage System (BESS) with a 85% roundtrip efficiency. A common WACC of 8 % is

7The Californian market design consists in a nodal energymarket with soft offer cap at $1,000/MWh,
completed with a CO2 price, a mandatory resource adequacy requirement (but no formal capacity mar-
ket), and a Renewable Portfolio Standard (RPS) program. However, in the 2019-2020 IRP exercise from
the CPUC, the RPS constraint is not binding (the associated shadow price is zero) and the decarboniza-
tion trajectory is driven by the constraint on GHG emissions.
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2026 2028 2030 2032 2034 2036 2038 2040 2042 2044

Years

250

300

350

T
W
h

Load

Gross load

Grid load

Figure 4: Load assumptions (grid load corresponds to the gross load minus decentral-
ized solar generation)

Technology
Available
decision

CAPEX
Fixed
O&M

Fuel
cost

Carbon
intensity

- - [USD/kW-Yr] [USD/kW-Yr] [USD/MWh] [tCO2/MWh]

CCGT Decommissioning 126 11 Average: 31 0.37
Peaker Decommissioning 46 14 Average: 51 0.61

PV Investment
& decommissioning 70 9 0 0

Storage Investment
& decommissioning 82 10 0 0

Table 3: Technical and economic parameters for endogenous technologies

taken for all technologies.
The initial capacities in 2025 for fossil capacities and storage are determined by run-
ning the GEP model on this first simulated year in order to start the simulation with
a balanced and economically optimized fleet. They amount to 10 GW for CCGT, 13.4
GW for peakers and 6.4 GW for storage. Initial values for endogenous solar is set to 0
since the existing and already planned fleet is accounted for exogenously. All endoge-
nous technology have a representative capacity of 200 MW per unit. All lifespans are
assumed to be longer than the simulation duration (25 years).

Exogenous technologies consist of CHP, nuclear, existing and already planned wind
and solar and finally Geothermal, Biomass and Small Hydro-power combined in one
category labelled ”Other RES”. Hourly availability factors of these technologies ismod-
elled by using data from CPUC [5], converted to an hourly resolution with Ninja Re-
newables [13] if necessary.

2026 2028 2030 2032 2034 2036 2038 2040 2042 2044

Year

0

100

T
W
h

Exogenous generation

CHP

Nuclear

Other RES

Existing & planned wind

Existing solar

Figure 5: Exogenous generation
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The CO2 emissions annual targets are presented in Figure 6. This trajectory depicts a
60% reduction in emissions throughout the study horizon.

2026 2028 2030 2032 2034 2036 2038 2040 2042 2044

Year

15

20

25

1
0
6
to
n
s

CO2 annual allowed emissions

Figure 6: Allowed CO2 emissions

3.2. Results from the GEP

The optimal trajectories for endogenous capacities are presented in Figure 7. Regarding
new developments, large scale solar reaches an amount of 68 GW installed capacity in
2045 and 74 GW for storage. Fossil peaker capacity is divided by two (-6.6 GWbetween
2025 and 2045) and CCGT capacity remains steady.
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Figure 7: Optimal capacity trajectories for endogenous technologies derived from the
GEP model

The constraint on CO2 emissions is binding during the full trajectory (Figure 8) and its
shadow price reaches the level of 363 $/tCO2 in 2045 (see Figure 9 for full path).

In the CPUC’s exercise, initial capacities in peaker plants and CCGT are respectively
8.6 GW and 16.2 GW. They are respectively reduced by 4.2 GW and 1.8 GW. Solar is
developed to the extent of 64.3 GW and storage 50.8 GW. Regarding the CO2 shadow
price, it reaches 403 $/tCO2.
We thus argue that although the exact figures deviate from the the CPUC’s exercise,
the broad landscape depicted in our exercise is very comparable.
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Figure 8: CO2 emissions compared with its target
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Figure 9: CO2 shadow price derived from the GEP model

In this configuration, it is interesting to note that a few hours with unserved load are
experienced in the first years but quickly vanish afterwards (see Figure 11). This is
due to the combination of new capacities developed to meet the decarbonization con-
straint and the fact that the fixed O&M costs needed to maintain gas resources are low
compared to the VoLL ($11–14/kW-yr vs. $20/kWh), i.e. it is cost-efficient to retain 1
MW of existing gas to avoid 1 MWh of lost load. Still, some price spikes occur within
each year (for instance when available capacity is perfectly equal to load) and allow the
different technologies to recover their costs.

Indeed, running the GEP model allows us to observe how costs are recovered with
this approach. This can be done by using the Cost Recovery Ratio (CRR) metric that
consists in computing the ratio between net revenues earned on the power market and
the invested capital for each vintage. For a given vintage of a technology t invested
in year y, the CRR is detailed in equation 4. We can note that each vintage recovers
exactly 100% of its costs in the GEP in accordance with theoretical results (see Figures
18 and 17).

CRRt,y =

min(#Y,Lu)∑
k=y

∑
h∈H

(
qt,k,h
nk,tkt

(λk,h − V Ck,t)−OCk,t

)
ICk,t

(4)
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IV. RESULTS AND DISCUSSION

Our simulation exercise is structured in two phases. First, Section IV.11. examines the
conditions underwhich the SDmarketmodel can track the optimal trajectory described
in Section III.22.. Then, Section IV.22. explores how the simulated EOM outcomes
change when we relax some of theses conditions.

4.1. EOM outcomes with idealistic assumptions

It is well known that it is theoretically possible to reach the long-run equilibriumwhen
fully informed and rational agents compete on perfect and complete markets. Here,
we investigate how these conditions translate in the SD framework and find that EOM-
induced investment and retirement decisions reproduce the optimal path only when
the four assumptions below jointly hold:

A1. Perfect information about all exogenous parameters over the whole horizon in-
cluding gross demand, distributed generation and costs (fuel, O&MandCAPEX).

A2. Perfect information about the CO2 price over the whole horizon. This price is
assumed to coincide with the shadow price computed with the GEP model.

A3. Whenmaking investment and retirement decisions in a given year, future optimal
decisions need to be known for all subsequent years until the end of the horizon.8

A4. Future anticipated decisions catch up with the optimal trajectory in case of devi-
ation.

Figure 10 depicts the simulated EOMoutcomeswhen assumptions A1–A4 hold. Visual
inspection shows that the mix trajectory closely tracks the optimal one provided by the
GEP model.

Some slight deviations are observable and can be attributed to the lumpiness of units.
Indeed, cost recovery is not ensured in the optimal solution with discrete units, but
only when capacities can be continuously adjusted to optimal values. Therefore, small
discrepancies occur because the SD model is based on discrete representation of units
and uses a decision criteria ensuring cost recovery. To correct for these unavoidable
deviations, we assume that anticipated decisions catch up with the optimal trajectory
(hence A4 assumption).

This can be further illustrated by the cost recovery analysis. The extra revenues – 105%
for PV and 107% for storage units on average – that can be observed for some vintages,
even in this idealistic case, are induced by the presence of a few additional hours with
unserved energy (see Figure 11) induced by the presence of price spikes that can reach
the VoLL and investment optionswith discrete capacities. However, this does not indi-
cate any significant adequacy issue since these numbers of hours remain low and close
to the optimal.

8Assumption A3 echoes with Section 2.3.22. and calls for the implementation of an anticipation mod-
ule that represents future optimal decisions.
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Figure 10: SD market simulation results in the idealistic case (i.e. assumptions A1–A4
hold)
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Figure 11: Number of hours with unserved load in the different simulations + GEP

4.2. EOM outcomes with relaxed assumptions

We now relax two of the above assumptions sequentially as presented in Table 4. First,
in Case 1, we drop A2 and consider that investors and asset owners make conservative
projections for the future CO2 price compared to the high price levels that are required
to meet deep decarbonization targets (Section 4.2.11.). This behavior is consistent with
observations in existing carbon markets worldwide where prices have been too low
and volatile to convey credible long-term investment signals in line with those targets
(e.g. Tvinnereim and Mehling [24]; Joskow [9]; Perino et al. [15]). Since a deviation is
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Idealistic case Case 1 Case 2

A1: perfect information about demand, dis-
tributed generation and costs

✓ ✓ ✓

A2: perfect information about the CO2 price ✓
A3: perfect information about future decisions ✓ ✓
A4: projected decisions catch up with optimal
decisions

✓

Table 4: Assumptions for the different cases.

expected, we assume that market participants anticipate the initial pace of investment
and decommissioning decisions as per A3 but do not update their capacity mix projec-
tions when they observe inconsistencies compared with the optimal trajectory (i.e. A4
is not verified anymore).

Second, in Case 2, we further drop A3 (i.e. both A1 and A3 do not hold) and consider
that investors and asset owners do not anticipate future investment and retirement
decisions (Section 4.2.22.). That is, they have a static view of the asset fleet with given
decommissioning dates. This assumption is motivated by the fact that anticipating
competitors’ decisions is a very difficult task with an uncertain outcome in liberalized
electricity markets [e.g. 8, 6].

4.2.1. Case 1: Conservatism in CO2 price projections

Case 1 considers that investors anticipate a lower CO2 price than the realized one as
shown in Figure 12. The anticipated CO2 price begins at the same level than in the ref-
erence case but gradually deviates downwards (-2% p.a. compared with the reference).
This lower trajectory is only used in the anticipation loopwhenmaking investment and
decommissioning decisions but the actual realization remains the reference price.

2026 2028 2030 2032 2034 2036 2038 2040 2042 2044

Year

100

200

300
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/
tC
O

2

CO2 price

reference price

lower price

Figure 12: Anticipated carbon price trajectory in the optimal vs. conservative case. The
reference trajectory (in blue) corresponds to the actual outcomes in all simulations.

19



Results depicted in Figure 13 show that all trajectories in Case 1 are significantly de-
layed compared with the reference idealistic case: fossil capacity remains too high, and
PV and storage development is significantly reduced and delayed. Finally, Case 1 does
not lead to the optimal mix trajectory in line with the decarbonization target. In partic-
ular, it does not allow to reach the targeted carbon emissions level (see Figure 14).

Regarding costs system-wide presented in Figure 15, the lower level of investments
observed in Case 1 induces some savings on the CAPEX sides. However the fact that
the resulting system in Case 1 is emitting more CO2 and that the actual outcomes of
the CO2 price is the reference price leads to more generation costs. Consequently, the
system total cost is increased by 1.6%.

Finally, the cost recovery analysis for this simulation shows extra-revenues for investors.
In fact, since the carbon price used during the investment assessment is lower than the
actual trajectory and because a higher carbon price is more beneficial to the candidate
technologies, each vintage ends up having a cost recovery ratio greater than 100%. In
particular, PV investments have an average 132 % cost recovery and 131 % for the stor-
age units (see Figures 17 and 17).
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Figure 13: Simulated EOM outcomes in Case 1

4.2.2. Case 2: identical to Case 1 + no anticipation of future decisions

Results for Case 2 depicted in Figure 16 significantly differ from both the idealistic case
and Case 1. The energy transition observed in Case 2 shows a fast development of PV
and storage early on which nonetheless achieves a too limited development of these
technologies compared to the idealistic trajectory in the long run (similarly to Case 1).

Two effects going in opposite directions explain these results. First, the non-anticipation
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Figure 14: CO2 annual emissions of power sector for the different simulations + GEP
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Figure 15: Comparison of system total cost from GEP + Simulations

of subsequent decisions in a context of growing capacity needs results in significant
scarcities being (incorrectly) foreseen by investors. On the investment side, this leads
to a significant amount of over-investment at the beginning of the horizon. In fact, in-
vestors do not anticipate that a substantial number of scarcity pricing hours, onwhich a
sizable share of their project profitability is based, will vanish as additional investments
materialize in the following years and alleviate capacity shortage. Similarly, projected
price ranges and asset profitability will also be negatively impacted by other future
developments (e.g. ‘cannibalization effect’).

Interestingly, the effect is similar for retirements. That is, even if asset owners expe-
rience losses in a given year, what turns out to be an over-optimistic view of future
capacity needs leads them to keep their plants online to capture future anticipated ben-
efits that would offset their current losses (but again incorrectly foreseen). This effect
gradually fades away over time as the planning horizon (over which future decisions
are not anticipated correctly) mechanically shrinks (edge effect).

The second effect we observe chronologically is due to the long-run underestimation of
the carbon price (Section 4.2.11.). We find that while the dynamic is impacted towards
early over-investment and over-capacity, installed capacity levels will eventually reach
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Figure 16: Simulated EOM outcomes in Cases 1 and 2

those induced by the lower carbon price signal.

Crucially, this effect is not only a matter of taking different paths to reach the same
point. As Figures 17 and 18 show, this significantly affects cost recovery for installed
capacities. Specifically, vintages from the beggining of the horizon experience signifi-
cant losses (e.g. 75% CRR for PV invested in the first year) when non-anticipation issue
is dominant. Going forward in the simulation, this effect fades out and the latest vin-
tages experience extra-revenues in the same way as Case 1. Regarding system costs
presented in Figure 15, they are increased by 6.3 % in this simulation, amounting to
10.1 G$ per year on average.
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Figure 17: Cost recovery for each PV vintage in different simulations and in the GEP
results
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Figure 18: Cost recovery for each storage vintage in different simulations and in the
GEP results

4.3. Summary of modelling results

The key metrics for the different cases previously exposed are summerized in Table
5. The main takeaway of this exercise is that the EOM simulation requires a certain
number of strong assumptions to reproduce the optimal trajectory. Relaxing this as-
sumptions can have damaging effects on the decarbonization trajectory (i.e. annual
emissions targets are not met), the system total cost and cost recovery for investors.

V. CONCLUSIONS AND POLICY IMPLICATIONS

In this paper, we first investigatewhat are the requirements behind the core assumption
of ‘perfectly competitive markets with fully informed and rational agents’ required for
the energy-only market design to reproduce cost-effective decarbonization pathways
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System Average
Total Cost

CO2 emissions
in 2045

Cost Recovery
for PV

Cost Recovery
for storage

[G$/Yr] [GtCO2] [%] [%]

GEP 9.5 12 100% 100%
Idealistic case 9.5 12 105% 107%
Case 1 9.7 16 132% 131%
Case 2 10.1 16 100% [75%-135%] 104% [82%-136%]

Table 5: Key metrics for the different cases

generated by traditional GEP models. To this end, we develop a SDmarket simulation
model to (1) study howmarket participants make investment and retirement decisions
and (2) compare simulated market outcomes with the results from a GEP model. The
comparison exercise has clear implications and shows that the aforementioned require-
ments are numerous and demanding, i.e. unlikely to be met in practice.

Besides perfect information about all relevant exogenous parameters in the SD simula-
tion, we emphasize the two following conditions:

1. A strong carbon price signal consistent with decarbonization targets is required.
It has to be acknowledged and used bymarket participants in their decisionmak-
ing process. This however seems highly uncertain in practice as market prices for
carbon are to a large extent too volatile and inconsistent with policy objectives.

2. Market participants must anticipate all subsequent investment and retirement
decisions when assessing a project opportunity or a closure at a given date. This
would probably require too high a level of information sharing and coordination
among them.

Second, we relax these assumptions to appraise how the EOM design responds. It
appears that the EOM lacks intrinsic counter-force and the generation mix can consid-
erably deviate from optimality. Effects are mixed in terms of dynamics and end points
but damaging impacts are observed in terms of decarbonization level and cost recovery
for investors.

Our analysis calls formore robustmarket designs to ensure power systemdecarboniza-
tion at least cost, e.g. in the form of hybridmarkets that rely on long-term arrangements
alongside short-term markets as we know them today [18, 9]. Strength of investment
and retirement signals should be a key point to assess the different available options
with a specific attention to their robustness vis-à-vis practical investor behaviors in a
context of deep uncertainty.

The models and methods developed in this paper outline relevant alleys for future
work. First, our SD market model embeds alternative risk-adjusted decision criteria
that can account for multiple forecasts and scenarios. This allows for further analysis
of the robustness of market designs with a broader range of investor behavior (e.g. risk
aversion). Second, SD modeling allows for the representation of alternative market
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designs (our model already incorporates some of them) including tenders and long-
term contracts. Finally, using amore disruptive simulation context in terms of demand
or cost evolution would offer further insights on market design robustness.
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APPENDICES

A. APPENDIX

1.1. GEP model equations

1.1.1. Objective function

The objective function is the discounted total cost over the study horizon.

min
n,n+,n−,q,f,c

∑
y∈Y

γy

(∑
h∈H

∑
t∈T

qt,y,h.V Cy,t

+
∑
t∈T

n+
y,t.ICy,t.

min(ℓt,#Y−y)∑
i=0

γi

+
∑
t∈T

ny,t.OCy,t

+
∑
h∈H

V oLL.fy,h

)
(A.1)

1.1.2. Constraints
Constraints (A.2-A.5) pertain to the hourly dispatch modelling:

(A.2) imposes load balance
(A.3) imposes the upper limit on generation
(A.4) imposes the upper limit on stored energy
(A.5) is the storage dynamics

∀y ∈ Y , h ∈ H,∑
t∈T

qt,y,h + fy,h = Dy,h +
∑
s∈S

cs,y,h
(A.2)

∀y ∈ Y , h ∈ H, t ∈ T ,

qt,y,h ≤ ny,tktαt,h

(A.3)

∀y ∈ Y , h ∈ H, s ∈ S,
socs,y,h ≤ ny,sksds

(A.4)

∀y ∈ Y , h ∈ H∗, s ∈ S,

socs,y,h = socs,y,h−1 + ρscs,y,h−1 −
1

ρs
qs,y,h−1

(A.5)
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Constraints (A.6 - A.7) pertain to investment and retirement dynamics.

(A.6) Number of units dynamics
(A.7) Lifespan limit: each endogenous investment can be associated with a decommis-

sioning decision during its lifespan.

∀y ≥ 1, h ∈ H, t ∈ T ,

ny,t = ny−1,t + n+
y,t − n−

y,t

(A.6)

∀t ∈ T , ∀y ∈ Y ,

if y + ℓt ≤ #Y :

#Y∑
i=y

n−
i,t ≥ n+

y,t−
(A.7)

Constraint (A.8) imposes an annual cap on CO2 emissions.

∀n ∈ N ,∑
t∈T

∑
h∈H

qt,n,h ≤ Qn
(A.8)

Each decision variables can be constrained in an ad-hoc manner with an upper/lower
bound orwith a specific value. This feature is used tomodel the existing fleet for which
n can be fixed at the beginning of the simulation and n+ can be constrained to 0 after-
wards if the technology is not candidate for new developments.

Finally, all decision variables (i.e. n, n+, n−, q, f, c) have non-negativity constraints.
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