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Abstract

This paper studies the provision of an essential good with time-varying uncertain stochas-
tic demand and capacity-constrained producers such as electricity. Due to price regulation,
public good externalities, and market power, investments are typically under-procured by
private agents. To restore efficient investment level, we analyze the design of reservation
markets where producers can sell their capacity availability before the demand is known.
While their direct effect on investment decisions is well known, we focus on indirect effects
generated by their implementation, namely how the capacity price is allocated on the de-
mand side andhow the realizeddemand is accounted for in themarket design. Wedevelop a
novel approach to studying the reservation market’s interdependencies and the subsequent
production and retail markets for the essential good. We provide a sequential analytical
model of the three markets and describe how different market design regimes can indirectly
affect the equilibria in the production and retail markets in terms of prices, investment level,
and welfare. In particular, we demonstrate that the ability of the reservation market to re-
store the social optimum, or at least to reach a second-best optimum, crucially depends on
the different design regimes of the reservation market, on the assumptions of policy inter-
ventions, and the various market inefficiencies. The model results and the associated policy
implication are discussed first using a general framework and then in reference to electricity
markets where capacity reservation is often used to ensure adequate investment to ensure
the security of supplies.
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I. INTRODUCTION

For some essential goods with demand varying over time, wholesale markets’ private
incentives are not sufficient to ensure that producersmake enough investments tomeet
peak demand in advance of the time when the demand materializes1. In such indus-
tries, due to the critical importance of these goods, policymakers tend to intervene and
implement price caps or other types of regulation that distort the price signal and un-
dermine investment incentives.2 Moreover, these goods can be characterized as public
goods, and they may exhibit externalities, for instance, a cold wave with peak electric-
ity demand or a pandemic with peak demand for medicine or medical equipment.3 In
such circumstances, the absence of adequacy between the capacity and the peak de-
mand, combined with the difficulty of implementing efficient rationing, leads to high
costs for society.

One solution to restore the optimal level of investment lies in implementing a manda-
tory reservation market in which producers commit to having capacity available to
meet the expected peak demand collectively, as prescribed by the regulator.4 On the
supply side, each participating producer makes a price-quantity offer for a capacity. If
a producer sells capacity in this reservation market, he receives a capacity price and
commits to being available to produce over future periods.

While the supply emerges naturally on those markets, the demand requires a regula-
tory intervention. Indeed, the public-good nature of investment during high-demand
periods implies that consumers are unwilling to buy capacities in reservationmarkets.5

Hence, the regulator must define the demand function administratively, so the market
clears and provides producers’ capacity prices. This paper establishes a framework
describing the economic impacts of different demand designs for reservation markets
and their policy implications. We focus on two interrelated questions that relate to (i)
the cost allocation regime between capacity buyers and final consumers; and (ii) the
degree to which the final consumers realized demand is accounted in the market allo-

1The intial framework of this work is electricity markets but our analysis fits into the more general
analysis of industries in which a form of competition follows long-run investments such as communica-
tion network [1], or radio spectrum [24].

2Policy interventions such as price caps and non-economic distortions made by a public entity lead
to aMissing Money issue that prevents sufficient revenue from being collected to cover costs [14].

3This inefficiency is associated with the existence of a Missing Market issue under which producers
consider their revenue insufficient to invest optimally [20]. This can be caused by hedging markets
being incomplete [7], or because of externalities associated with the public-good nature of investment
and consumption choices [12], innovation spillovers, and climate change.

4Current implementations of such mechanisms have been the prerogative of the electricity sector
under the name capacity remuneration mechanism, see for instance [8] for a technical description of
potential implementations.

5The absence of a ’spontaneous’ demand function has similar roots as theMissing Money issue previ-
ously discussed. Transaction cost and asymmetric information prevent adequate transactions up to the
optimal level; see for instance [15] for a discussion in electricitymarkets. The insurance of having enough
capacity has a private value (how much each consumer is willing to pay to avoid inadequacy) but also
a social value, as an increase in investment reduces the probability of systemic costs [9]. Furthermore, it
is sometimes technologically, socially, and economically impossible to know the willingness to pay for
this insurance.
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cation design.6 In this paper, we first describe the channel throughwhich each possible
regime impacts the equilibrium on the demand side and ultimately how it changes in-
vestments decisions. Then, we demonstrate how those indirect effects constrain the
regulator in choosing the first best economic level. In other words, our model allows
analyzing the endogeneity between thewelfare-maximizingmarket outcome that regu-
lators aim to restore through their intervention and the design of the reservationmarket
implemented.

The direct effect of an additional stream of remuneration on investment decisions is
well understood. The current literature covers a significant range of issues : (i) the
outcomes in investment decisions with and without reservations markets, (ii) the ef-
fect of market power on the capacity price determination, (iii) the relation with risk
and business cycle (iv) the discrimination between different investment technologies.7

However, to our knowledge, there has been no formal analysis of different reservation
markets’ demand designs, the incentive properties of these alternative approaches, and
their ability to restore the socially optimal level of investment beyond the direct effect
of the increase of the marginal investment value due to the additional capacity price.8

[21] is the first paper to represent retailers’ strategies in the reservation market. She de-
velops a theoretical model to analyze the preferences regarding information precision
for uncertain future demand. Contrary to our approach, she models heterogeneous
price taker producers and homogeneous buyers competing for à la Cournot under un-
certainty on their level of capacity obligation. In this paper, we take a step back from
the direct price-setting approach and develop a model that sheds light on the complex
interactions between the reservationmarket design and the incentives of producers and
retailers. Our model provides some new and non-intuitive insights on their incentive
properties and their ability to restore the socially optimal (welfare-maximizing) level
of investment

An annex contribution of our model to the literature lies in constructing the supply
function in the reservation market. To ensure the endogeneity of the investment de-
cisions and the emergence of equilibrium in the three markets in our model, we de-
rive an endogenous supply function in the reservation market. Namely, following
the main theoretical view for reservation markets9, we assume that producers offer
their marginal opportunity cost of providing additional capacity. This opportunity
cost equals the marginal loss of revenue incurred by the investment level beyond the
profit-maximizing equilibrium. Our modeling proposition is central as any indirect ef-
fects generated by the reservation market can affect the expected revenue made by the

6We also use interchangeability term ex-post temporality, as reservations market are set ex-ante be-
fore demand is known; as well as the term capacity demand allocation. At the same time, while this
is out of the scope of this paper, the dynamic nature of the provision of an essential good is central. It
includes the decision to invest, which can span from many years to a few months, and the decision to
consume the good. For instance, in electricity and vaccines, the good is almost immediately consumed.
On the other hand, medical equipment, intensive care units, strategic energy reserves, or human capital
are more durable goods.

7See [4] for a detailed literature review on the theory and implementations issues of reservation mar-
kets.

8On the other hand, the importance of the demand function design in the reservation market is well
known. See for instance, [11] and [5] [9] [3]. However, those papers still only consider the effect of the
reservation market directly on the supply side, while our paper underlines the indirect effect of this
instrument on retailers and consumers, which in turn impacts producers.

9See for instance [6].
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producers and can indirectly be captured during the formation of the supply function
in the reservation market.

The first market design regime studied is the canonical reservation market. We build
on the previous literature, and the design found in [18] and [12] which relies on the
assumption that the reservation market does not have any effect beyond increasing
the investment level. Following the approach of our paper, this canonical regime is
similar to the cost passthrough using a lump-sum tax. In this case, and even when
considering the endogenous supply function in the reservation market, this market
design always restores the first-best optimum given the system inefficiencies. Namely,
providing that the demand function is intersecting the supply function at the optimal
level,10 the equilibrium price in the reservation market and the suboptimal price in the
subsequent markets is always equal to the price in an optimal system without price
cap.11

We then investigate the case inwhich the reservation price impacts the consumers at the
margin. In this case, the regime is similar to allocating the capacity price as a Pigouvian
unitary tax. We show that the existence of the reservation market indirectly modifies
the provision of the essential good on the wholesale market by redistributing the dif-
ferent states of the world between off-peak and on-peak periods12, and by lowering
consumers surplus. Therefore, we demonstrate that the first-best outcomes under this
regime are always lower than under the canonical regime.

In the first extension, we analyze a second inefficiency. When the price cap is reached,
the investment availability becomes a public good as the demand becomes inelastic.
Due to the impossibility of efficiently rationing consumers, they incur a significant wel-
fare loss.13 This additional assumption regarding the inefficiency of wholesale-only
market design has significant implications for the design of the reservation demand
function. Indeed under this new assumption, we find that the indirect effect created
by allocating the capacity price on a unitary basis is now ambiguous for social welfare.
Under specific parameters value, the reservation market can bring more social welfare
at the first-best level than the initial allocation regime or the optimal wholesale-only
market.

As a third step, we extend our analysis to implementing a regime where the regula-
tor allocates the cost based on actual retailers’ market shares. It allows us to introduce
the ex-post temporality in the current analysis, where the design of reservation mar-
kets considers the realized demand and analyzes the effect of retailers’ market power
in the model. We first show how this design affects at the margin the retailers who
play ’à la Cournot’ on the retail market, and then we integrate the new equilibrium into

10In this paper and unlike [11], we do not analyze the risk of having regulatory errors.
11We also demonstrate that this result also holds for other types of inefficiencies. With the price cap,

the equilibrium reservation price equals the expected lost revenue. In the case of capacity as a public
good, the price is equal to the difference between the private value of the investment and its social value.

12That is when the capacity does not bind and binds.
13Using the same initial model [12] showed that additional capacity payment is necessary when the

system includes the public-good nature of the investments. Indeed, the inadequacy between capacity
and consumption generates negative externalities. Hence, to fully internalize the effect of the capacity
inadequacy, it is necessary to generate an adder on the wholesale price. We also use in this paper the
same representation of the public-good nature of the investment. This effect of a price cap is also closely
related to the concept of reliability externality described by [23].
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our model with investment decisions and the reservation market. We find that this al-
location creates an intermediary outcome between the unitary tax and the lump-sum
tax while having significant redistributional properties. Finally, we can also study the
effect of the retail market structure on the equilibrium outcomes of the model.14 De-
pending on the assumptions with respect to the model parameters and the inefficien-
cies assumptions, we find that lowering the number of retailers can provide additional
social welfare.

Finally, we analyze the case of a reservation market entirely based on the realized de-
mand level. To do so, retailers are obliged to cover their quantity sold on the retail
market by buying directly on the reservation market, given a penalty system. We fo-
cus on how retailers’ individual strategies can form an aggregated demand function
in the reservation market, and we analyze the optimal capacity bought by retailers in
the reservation market. We find that such an approach for the demand function can
provide the optimal level of investment under specific conditions. The market equi-
librium under this regime relies on the marginal value a capacity brings to retailers’
profit which also depends on the market structure in the retail market, the consumers’
demand function, and the penalty system.

We finally discuss the policy relevance of our findings in reference to electricitymarkets
where capacity reservation is often used to ensure adequate investment to ensure the
security of supplies. We conclude by reviewing future potential extensions of ourwork.

We provide in Section 2 a reminder of the benchmark model that describes investment
decisions in generation capacity. In the same section, we implement the reservation
market and build the theoretical supply function. Then, we model the market designs
for the demand function in Section 3 for the different cost passthrough regimes and
Section 4 for the different ex-post temporality regimes. The closed-form solution and
the numerical application are presented in Section 5. To conclude, we discuss possible
extensions of the model in Section 6.

II. BENCHMARKMODEL

2.1. Assumptions

We consider an initial economic system with three agents: producers, retailers, and
final consumers. Producers invest in capacities to produce a homogeneous good. They
sell the goods on a wholesale upstreammarket to retailers. Then, retailers resell it on a
downstream retail market to consumers.

Model stages. The model has three stages. First, producers choose the level of invest-
ment. Second, the wholesale market clears. Third, the retail market clears. We assume
the final consumers’ demand is uncertain for all agents when making investment deci-
sions. On the other hand, the demand is known when the producers and retailers sell
the goods. Those two stages can be interpreted as a repetition of multiple states of the
world over a given period (for example, one year), drawn from the distribution [17].

14We do not consider market power on the supply side in our paper, as it is well documented in the
literature, see for instance [25] and [17] for its effect on investment decision with a price cap, see [18] for
its effect with a reservation market.
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Investment decision Wholesale market Retail market

Uncertain
expected demand Realized demand

Producers. We assume perfect competition on the supply side. Producers use a single
technology to produce the good. It is characterized by a variable unitary cost c and a
fixed unity investment cost r. We normalized the capacity level, so one unit of capacity
allows to produce one unit of the good. The level of capacity installed is k.

Retailers. Retailers compete à la Cournout to resell the goods to final consumers but
do not behave as an oligopsony in the wholesale market. The imperfect competition is
modeled using a finite number of retailers n. We model the retail as perfectly compet-
itive for some parts of the paper to keep the analysis tractable (i.e., n → ∞). The use of
a finite number is always explicitly indicated. We assume that retailers incur no cost
when reselling from thewholesale market to the retail market apart from thewholesale
price 15.

Demand. On the retail market, final consumers, are characterized by the following
assumptions:

• They have the same individual uncertain demand with an aggregate demand
D(p, t), t being the state of the world. The demand uncertainty is characterized
by a distribution function f(t) and a cumulative distribution function F (t). The
inverse demand function is p(q, t), with q the quantity sold on the retail market
16, such as D(p(q, t), t) = q. For convenience, we assume that ps(q, t) is the price
on the wholesale market, and p(q, t) is the price on the retail market.

• The demand function have the following properties 17: ∀t ∈ [0,+∞) (i) pt(q, t) > 0
(states of the world are ordered), (ii) pq(q, t) < 0 (decreasing price with respect to q)
(iii) pq(q, t) + qpqq < 0 (decreasing marginal revenue with respect to q) (iv) pt(q, t) +
qpqt(q, t) > 0 (increasing marginal revenue with respect to t) and (v) lim

q→+∞
p(q, t) < c

(prices can be below the marginal cost for some t ).

To ensure producers invest in capacities we need additional conditions: p(0, t) > c +
r ∀t and lim

q→0
p(q, t) < c.

2.2. Optimal investment decision

We now describe the three stages in reverse order. We define the equilibrium in each
stage and find the final optimal level of investment by backward induction.

Third stage - Retail market. We assume that symmetric retailers can act strategically in
the retail market, and they take the wholesale price as given. The retailer’s profit made
on the retail market is: πr

i (t) = qi(p(q, t) − ps(q, t)). The first-order condition gives

15Therefore, perfect competition implies that prices are strictly equal in the wholesale and the retail
market

16We assume the quantity sold on the retail market is strictly the same quantity asked on thewholesale
market as storage is not available.

17For most of the functions f(x, y), fx(x, y) = ∂f
∂x (x, y), fxx(x, y) =

∂2f
∂x2 (x, y),fxy(x, y) = ∂2f

∂x∂y (x, y)
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the equality between the marginal revenue and the marginal cost. Thus, the inverse
demand function of retailers on the wholesale market is a downward rotation at the
intercept of the final consumer demand function :

ps(q, t) = p(q, t) +
q

n
pq(q, t)

When the retail market is perfectly competitive, we have straightforwardly : ps(q, t) =
p(q, t)

Second stage - Wholesale market. Producers know the final consumer demand at this
stage, so the retailers’ inverse demand function is certain. The price is determined by
the investment level k chosen during the first stage. We assume perfectly competitive
producers, so when k is not binding, the price is equal to the marginal cost c (off-peak
periods). When k is binding, the price has to rise above marginal to ensure that supply
equals demand (on-peak periods). We denote t0(k) the first state of the world when ca-
pacity is binding, that is, when the price at the capacity level is equal to the marginal
cost: ps(k, t0(k)) = c. We also define q0(t) as the quantity bought by final consumers
when the retail price is equal to the marginal cost, such as ps(q0(t), t) = c. During off-
peak periods, when t0(k) ≥ t, the price on the wholesale market is the marginal cost
c and the price on the retail market is equal to p(q0(t)). During peak periods, when
t > t0(k), the demand function determines the price with p(k, t) + k

n
pq(k, t) the price on

the wholesale market, and p(k, t) the price on the retail market.

First stage - Investment decisions. At this stage, final consumer demand is unknown,
so is the wholesale and retail price. We find the optimal first-best18 investment level k∗

by maximizing the social welfare given in the following equation:

W (k) =

∫ t0(k)

0

∫ q0(t)

0

(p(q, t)− c)dq f(t)dt+

∫ +∞

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt− rk (1)

2.3. Market equilibrium

Essential goods are characterized by inefficiencies that prevent the market investment
from reaching the first-best economically efficient. Two main reasons why private in-
vestors do not provide sufficient capacities: (1) the revenue collected on the market
is insufficient to cover their production and investment costs, (2) prices do not con-
sider the positive externalities implied by their availability during high demand pe-
riods. For the first rationale, we derived the inefficiency that typically characterized
essential goods such as electricity: the suboptimality of the wholesale price modeled
via a price cap19. In some extensions of the following sections, we present two other
rationales: the public-good nature of capacity during peak-demand level and a concen-
trated retail market represented via retailers’ market power.

18We use the term first-best, socially optimal and welfare-maximizing interchangeably.
19This modeling approach can represent both an explicit price cap and an implicit one. In the latter

case, political interventions due to the essential nature of the good can artificially alter the price. For
instance, when the power system operator needs to carry out technical interventions to avoid system
failures.
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The market outcome in terms of investments is found by estimating the expected rent
ϕ(k). This rent is the net marginal revenue made on the wholesale market when the ca-
pacity is binding, which is the difference between the wholesale price and the marginal
production cost. The following equation gives the expected unitary rent:

ϕ(k) =

∫ +∞

t0(k)

(ps(k, t)− c) f(t)dt (2)

The market investment level k̄ of investment under imperfect competition framework
is found by solving: ϕ(k) = r. Under perfect competition on the retail market we have
k∗ = k̄.

We implement a price cap denoted pw. In order to create inefficiencies, the price cap
must be binding for some states of the world, so it needs to be below the highest price
during the highest demand period; pw < lim

t→∞
ps(0, t). However, to allow for invest-

ment, we also need that the price cap to be above the total unitary cost: pw > r+ c [17].
Following the previous analysis, we introduce a second threshold tw0 (k). It is the first
state of the world when the price cap is binding, that is, when the price at the capac-
ity level is equal to the price cap: ps(k, tw0 (k)) = pw. We also define qw0 (t) the quantity
bought by retailers (or consumers under perfect competition) when the price is equal
to the marginal cost, such as ps(qw0 (t), t) = pw. The price cap does not change the social
welfare function equal to W (k) as it only redistributes surpluses between consumers,
producers, and retailers. We find the investment level quantity by estimating the ex-
pected rent. The following equation defines this rent. It is shared between the states of
the world when prices are above the marginal cost and below the price cap and when
prices are above the price cap. The conditions on pw relatively to the marginal cost c
ensure that tw0 (k) ≥ t0(k).

ϕw(k) =

∫ tw0 (k)

t0(k)

(ps(k, t)− c) f(t)dt+

∫ +∞

tw0 (k)

(pw − c) f(t)dt (3)

We find the level of capacity installed in the system given the price cap kw by solving:
ϕw(k) = r. The following reservation shows that a price cap in the wholesale market
lowers the investment level and increases inefficiency.

Lemma 1. A binding price cap leads to a lower installed capacity compared with the optimal
investment level given by the social welfare maximization: kw ≤ k∗ ∀pw ∈ [c+r, lim

n→∞
p(0, t)[.

The optimal capacity payment zw(k) is equal to the expected difference betweenwhat should have
been the wholesale price and the price cap when it is binding :

zw(k) =

∫ +∞

tw0 (k)

(ps(k, t)− pw)f(t)dt (4)

Proof. See Appendix
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2.4. The supply curve on reservation markets

We set in place a reservation market to encourage producers to increase their invest-
ment. On the demand side, we assume in this subsection that the demand function
regime in the reservation market is unspecified. We denote its inverse demand func-
tion pc(k) with k the level of capacity offered in the reservation market, the demand
function is Dc such as Dc(pc) = k. pc(k) should be decreasing in k and defined as pc(.)
is twice derivable.

[18] defines the equilibrium conditions for the reservation market and the supply side:
first, there are no short sells, meaning that producers cannot sell more capacity than
they own. Second, it is optimal for producers to offer all their capacities if the first
condition holds. Finally, decision timing does not matter given our current setting:
results still hold if the reservation market is set before or after the investment decision
as long as it is before final consumers’ demand is known.

Webuild the supply function based on the assumption that producers offer theirmarginal
profit loss associated with the reservation market’s participation. It is the common ap-
proach in the literature as it represents the cost of investing beyond the optimal capac-
ity level. However, to our best knowledge, this is the first time a supply function in
a reservation market is directly modeled using the benchmark framework. As we as-
sume perfect competition in the wholesale market compared to [18], and [25], there is
no marginal effect of capacity choices on the rent.20 The full profit with a reservation
market for a producer is: πs

i (k) = ϕ(k)ki− rki+ pc(k)ki. Under perfect competition, the
first-order condition gives: ϕ(k) − r + pc(k) = 0. Therefore, the reservation market’s
supply function equals themarginal cost associatedwith the deviation from themarket
investment level k0, which would have been made without the reservation market.

Proposition 1. We denotes the supply functionX(k) and the inverse supply functionX−1(pc)
such as X−1(X(k)) = k. Following a marginalist approach, the supply function on the reser-
vation market is defined as follow :

X(k) =

{
0 if k ≤ k0

r − ϕ(k) k > k0
(5)

Proof. See Appendix

Below k0, the marginal cost is positive, and the supply is null. Indeed, as the wholesale
market’s profit function is concave, any marginal revenues on the left side of the op-
timum are above the marginal cost of r. The marginal revenue is below the marginal
cost on the right side of the optimal investment level. Therefore any deviation to the
right creates a positive opportunity cost.21

20Indeed, under perfect competition, the rent appears only when total capacity is constraining. Under
imperfect competition on the supply side, the rent also exists due tomarket power and can appear before
the total capacity is binding.

21Our approach to the supply function in the reservation market is similar to the theory of supply
function equilibria where bidders offer a function such as each point on this function maximizes their
profit/utility [10]. In our paper, the supply function in the reservation market is built such that each
producer is indifferent between providing their investment market equilibrium or any investment on
the curve in return for the corresponding capacity price.
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III. CAPACITY COST ALLOCATION DESIGN

3.1. Exogenous ex-ante requirements

We start our analysis of the demand function specification by assuming a capacity de-
mand in which a single entity determines the whole demand of capacity in the reser-
vation market22. To do so, she needs to forecast the future expected demand of final
consumers first, and then she builds the demand function in the reservation market.
Finally, she transfers the purchasing cost to the retailers using an exogenous ratio or
directly to consumers via a lump-sum tax. This assumption corresponds to the tradi-
tional approach used in the literature on the reservation market. We call this market
design the exogenous ex-ante regime because (i) the allocation of capacity costs does
not depend, for instance, on retailers’ realized strategy but rather on exogenous factors
such as their past market share (ii) the design does not depend on realized demand for
the final good. In other words, this regime only describes the reservation markets’ di-
rect effect via the incentive to invest by the capacity price. There is no effect on the final
demand because this remuneration is simply a surplus transfer from consumers to pro-
ducers. This approach’s result is that the capacity price equals the optimal payment,
allowing to restore an optimal level of capacity when the vertical demand function for
capacity is calibrated to k∗ is andwhatever the type of inefficiency is considered 23. This
result is described in the following Proposition and implies that the cost of a reservation
market is strictly equal to the transfer necessary to restore the optimal level of capacity.

Proposition 2. Assuming that

1. Producers do offer the marginal opportunity cost on a reservation market (see eq. 5), and
2. The demand function is designed such that the clearing quantity is equal to the optimal

level of investment, and
3. The underinvestment is caused by the price cap

Then the clearing price is always equal to the optimal payment needed to restore efficiency.

Proof. See Appendix

This result highlights the discussion between implementing a price or a quantity in-
strument to resolve the market inefficiencies or constraints [12, 22]. We show in this
Proposition that the outcome of the reservation market is strictly equivalent to a capac-
ity price set by the regulator. Under this regime, the exogenous ex-ante approach is
optimal because it gives the right investment level given the inefficiencies.

Our model can also provide some comparative statics on the capacity price given the
specification of section 6. For instance, when only the price cap is considered in the
model, the results are intuitive and in line with previous works, with the capacity price
being always positively impacted by an increase of the demand intercept or by the
product costs (variable and fixed), while the price cap has a negative effect.

22We do not make any assumptions on the identity or on the role of the capacity buyer in this section
as it is outside the scope of this paper.

23We demonstrate in the Appendix that the Proposition can be expanded to the inefficiencies created
by retailers’ market power and by the public-good nature of capacities.
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3.2. Endogenous ex-ante requirements

We now introduce an indirect effect of the reservation market demand function. It
implies that the capacity prices marginally impact the final consumer demand via ca-
pacity allocation. To compare with the previous setting without this indirect effect, the
first previous case can be understood as an increase of the fixed part in a two-part tar-
iff (or a lump sum tax), while the second case in this subsection can be understood as
an increase of the variable part (or a unitary tax). The central idea is to enhance our
understanding of an optimal investment level given a market design by highlighting
this effect. In this case, the first-best solution is endogenous to the market design im-
plemented to reach this first-best. We use a similar approach of the impact of a tax
on a partial equilibrium model to illustrate this endogenous effect on investment deci-
sions. We demonstrate the existence of the indirect effect by repeating the steps of the
previous model and using backward induction.

Fourth stage - Retail market. Fourth stage - Retail market. Let pc(k) be the capacity
price adder for final consumers, identical to a unitary consumption tax. The final con-
sumers demand function shifts to the left with its new value equal to: ps(q, t) − pc(k).
k is still the quantity bought on the reservation market by the entity at a price pc(k).
We denote t1(k) and q1(k) the new thresholds for respectively the states of the world
between on-peak/off-peak periods such that ps(k, t1(k)) − pc(k) = c, and the quantity
such as prices are equal to the marginal cost such that ps(q1(t), t)− pc(k) = c.

Third stage - Wholesale market Third stage - Wholesale marketWhile the demand is
always lower or equal to the initial demand function, the impact on the expected social
welfare is not trivial. The following Proposition summarizes themain insight and states
that the new welfare function is always lower or equal to the exogenous case.

Proposition 3. Allocating the capacity price as a unitary tax only affects the share between
on-peak and off-peak periods and the surplus’s size during off-peak periods. Namely, only the
occurrence of the two periods t0(k) and the intersection between the demand function and the
marginal cost q0(t) change, the welfare function becomes:

W1(k) =

∫ t1(k)

0

∫ q1(t)

0

(p(q, t)− c)dq f(t)dt+

∫ +∞

t1(k)

∫ k

0

(p(q, t)− c)dq f(t)dt− rk

Proof. See Appendix

We can rewrite the equation by showing the initial welfare functionwithout endogene-
ity: W (k)−W1(k) = ∆W1(k). With

∆W1(k) =

∫ t0(k)

0

∫ q0(t)

q1(t)

(p(q, t)− c)dq f(t)dt+

∫ t1(k)

t0(k)

∫ k

q1(t)

(p(q, t)− c)dq f(t)dt > 0

The first part of ∆W1(k) represents the loss when it is off-peak periods for both cases
(indeed we have t0(k) ≤ t1(k) as lower demand always means a higher chance of being
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off-peak): the consumers fully support the loss as producers receive the marginal cost.
The second part represents the loss when the capacity level is such that it is an off-peak
period with the endogenous case and an on-peak for the other case. Therefore, the
loss is shared between consumers and producers, the former sustaining a higher price
and receiving a lower margin. Note that there is no loss when both cases are in peak
periods, as the quantity on the market is strictly equal to the capacity installed. This
last remark is particularly interesting because recovering the capacity cost allocation
only during peak periods does not generate a deadweight loss. Considering the price
cap does not change the previous overall Proposition, as the price cap is binding only
when both periods are on-peak. That is when no loss is generated.

The following reservation concludes on the new optimal investment level given this en-
dogenous regime. It has a strong implication as we state that this regime also modifies
the objective for the regulator in terms of final investment level. Moreover we find that
the endogenous regime is always worse than the exogenous regime regarding social
welfare.

Lemma2. The new first-best solution in terms of investment level under the endogenous regime
defined as k∗

1 = max
k

W1(k) is always lower or equal to the first-best solution under the exoge-

nous level k∗. In terms of welfare analysis, the social welfare at the optimal investment level
W1(k

∗
1) is always lower or equal to the social welfare at the optimal investment level under the

exogenous regimeW (k∗).

Proof. See Appendix

The result stems from the analysis of the derivative of∆W1(k)with respect to the level
of investment k, which is always positive. We nowprovide some comparative statistics
on the difference between the twowelfare function∆W1(k) for themodel specification.
By construction, the comparative statistic for the difference between thewelfare has the
same effect on the new first-best solution in terms of investment level. We demonstrate
that the price cap and the demand intercept always have a negative effect on ∆W1(k).
An increase of the price cap reduces the need for the capacity payment through the
negative value of the derivative of q1(t), with respect to the price cap, hence the en-
dogenous effect off the cost allocation. At first sight, a higher demand through the
demand intercept has an ambiguous effect on the difference. An increase in its value
increases the need for capacity, which also increases the payment.

On the other hand, it has a decreasing effect that materializes through the derivative
of q1(t). We find that the second effect always dominates the first, hence the net de-
creasing effect of the demand intercept on the difference. Finally, an increase in the
producer’s cost (fixed and variable) always increases the delta, making the investment
less profitable.

We continue the analysis of the endogenous regime by defining the main equilibrium
variables of the economic system.

Second stage - Investment decisions Producers make their investment decision based
on the expected net revenue, which is composed of the expected rent and the capacity
revenue. The net revenue is similar to the exogenous case, except for the new state of
the world thresholds and the wholesale price.
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ϕw
1 (k) =

∫ tw1 (k)

t1(k)

(ps(k, t)− pc(k)− c) f(t)dt+

∫ +∞

tw1 (k)

(pw − c) f(t)dt+ pc(k) (6)

First stage - Reservation marketWhen a producer participates in the reservation mar-
ket, he bids its marginal opportunity cost without the capacity revenue equal to r −
ϕw
1 (k). Therefore, following the previous stage, the equilibrium is defined with the fol-

lowing equalityX(k) = r−ϕw
1 (k). The following Proposition states how the remaining

equilibria are found and underline the endogenous nature of this regime where the
choice of capacity both on the supply and demand side of a reservation market has
indirect effects. In words, the endogeneity of the regime also changes the bidding be-
havior in the reservation market compared to the exogenous case.

Proposition 4. When the capacity price enters the final consumers demand as a marginal cost,
solving the following equation allows to find the supply function X1(k) in the reservations
market:

X1(k) : p
c(k) = r −

(∫ tw1 (k)

t1(k)

(ps(k, t)− pc(k)− c) f(t)dt+

∫ +∞

tw1 (k)

(pw − c) f(t)dt

)
(7)

Moreover, the supply function is always higher under the endogenous regime than under the
exogenous regime.

Proof. See Appendix

Regarding the reservation market, as the demand is lower under this regime, the op-
portunity cost associated with providing another capacity is higher. By extension, the
supply function on the reservation market is also higher. Therefore, this regime has an
ambiguous effect on the reservation market equilibrium: capacity prices can be higher
or lower than exogenous capacity prices, even though the quantity is always lower.
This implication can be summarized by defining the optimal payment to restore the
optimal level with an endogenous price. Recall that with only a binding price cap,
the optimal payment is the expected difference between what should have been the
wholesale price and the price cap when the price cap is binding. The following Lemma
defines the new optimal payment, and we compare it with the previous with the ex-
ogenous regime.

Lemma 3. The optimal payment to restore efficiency when a price cap is binding is defined as
follow:

z1(k) =

∫ t1(k)

0

∂q1(t)

∂k
(p(q1, t)−c)f(t)dt+

∫ tw1 (k)

t1(k)

r−ϕw
1 (k)f(t)dt+

∫ +∞

tw1 (k)

(p(k, t)−pw)f(t)dt

(8)

Proof. See Appendix
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Compared to the initial payment zw(k), only the third part of the optimal payment is
directly related to the expected difference between the optimal wholesale price and
the price cap. In this regime, the magnitude of the loss is impacted via t1(k), which
means fewer periods during which the price cap is binding. The first part represents
the loss associated with the threshold shift for on-peak/off-peak periods. It is negative
as ∂q1(t)

∂k
≤ 0. When q1(t) decreases due to the capacity price, the rent decreases when

the capacity starts binding at t1(k). The second term is positive, and it is directly related
to the loss associated with the decrease of the demand during on-peak, which also
decreases the rent for any state of the world between t1(k) and tw1 (k).

3.3. Extension - endogenous ex-ante regime with inefficient rationing

We now introduce the public-good nature of capacity during peak demand. First, we
use this rationale to revise the comparison between the endogenous and exogenous ex-
ante design for reservation markets. Then, it will also be used to analyze the capacity
demand allocation regime in the next section.

At the price cap level, when it is binding, the price-elastic demand becomes inelastic24.
Therefore, we face the same rationing problem as in the literature with limited produc-
tion capacities and inelastic consumers (see for instance [14]). The absence of efficient
discrimination between consumers with heterogeneous willingness to pay implies that
investment availability is a public good when the price cap is binding. Therefore, it
is underprovided by producers when they make their investment decisions. There is
various way to describe the cost of involuntary rationing in the literature.25 [14] shows
that it depends if the rationing is anticipated or not. [17] finds that the effect of involun-
tary rationing can be different if it has an impact on the expected demand level. From a
modeling perspective, [12] uses a general function J(.) to represent this negative exter-
nality. The function depends on the delta between the quantity bought at a price equal
to the price cap and the investment level. We note this costM(k), namely :

M(k) =

∫ +∞

tw0 (k)

J(∆0k)f(t)dt (9)

with∆0k a function of the difference between the installed capacity k and the quantity
bought by retailers at the price cap qw0 .26 For instance, we can model rationing using
a ratio (1 − h), which represents the share of consumers selected indifferently that is
forced to stop consuming [16]. When rationing occurs, an optimal ratio h should be
endogenously chosen such as we have (1 − h(t))qw0 (t) = k. In this case, consumers
sustain an additional loss proportional to their initial surplus with efficient rationing,
namely :

M(k) =

∫ +∞

tw0 (k)

(1− h(t))

∫ k

0

(p(q, t)− pw)dqf(t)dt (10)

24The introduction of retailers into the model does not change the intuition. At a price pw, the Cournot
competition between the retailers pushes them to ask a quantity equal to qw0 (t).

25Note this is an additional cost compared to the loss of the surplus that we described previously with
the price cap.

26Regarding the sign of the cost and its derivatives: Mk(.) ≤ 0 < Mkk(.). Finally, note also that
∂∆0k
∂k ≤ 0 as an increase of capacity lower the difference for a given value of qw0 .
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Following [12], we use the general notationM(k) =
∫ +∞
tw0 (k)

J(∆0k)f(t)dt. The following
equation describes the new social welfare function :

W bo(k) = W (k)−
∫ +∞

tw0 (k)

J(∆0k)f(t)dt (11)

We denote kbo the optimal level of investment when we maximize social welfare. Con-
trary to the imperfect competition in the retail market and the price cap, the social cost
of rationing directly affects the social welfare function. The expected rent collected on
thewholesalemarket by producers remains unchangedwhenwe include inefficient ra-
tioning, which only affects consumers’ welfare.27The following reservation shows that
when we cannot efficiently ration final consumers when the price cap is binding it im-
plies a higher inefficiency.

Lemma 4. When the price cap induces involuntary rationing, the inefficiency is greater than
with voluntary rationing. In other words, the delta between the optimal level of investment and
the market outcome is greater with the first than with the latter: k∗ − kw < kbo − kw. The
optimal capacity payment zbo(k) depends on the representation of the involuntary rationing
social cost. Under our assumption, it is equal to the marginal value of an additional capacity
for the system, which decreases the cost of involuntary rationing:

zbo(k) = −Mk(k) = −
∫ +∞

tw0 (k)

Jk(∆0k) +
J(∆0k)

∂∆0k

∂∆0k

∂k
(12)

Proof. See Appendix

Note that the two parts of the optimal payment can be opposite. For instance, given the
representation in equation 10, the first part of equation 12 is positive and is relative to
the hypothesis behind the cost representation: as the rationing cost is proportional to
the consumer surplus, a higher surplus is generated by the investment indirectly leads
to a higher cost of inefficient rationing. The second part of the equation is negative and
stands for the initial reduction in rationing: a higher investment level reduces the need
to implement inefficient rationing. The rest of the paper assumes that the second effect
is always higher than the first one to keepMk(k) < 0.

What happens when we include the rationing cost in the previous model? Given the
rationing cost of the formM(k). The new welfare function becomes:

W bo
1 (k) = W1(k)−

∫ ∞

tw1 (k)

J(∆1k)f(t)dt

With ∆1k, the new function represents the difference between the quantity consumed
at the price cap qw1 (k)and the investment level. By construction, the main results for
the rationing hold under the endogenous regime, especially in terms of the first-best
solution. It implies a higher investment level and lower welfare than the case without

27Some authors do include those costs in the producer profit, using a fixed reputational cost [19] or a
market shutdown during which producers also lose profit [9].

16



inefficient rationing. Note that the quantity at the price cap q0(k) does not depend on
the level of investment under the exogenous regime. However, when the capacity price
is allocated under the endogenous regime, the quantity q1(k) is indirectly affected by
the investment level.

We focus our analysis on comparing the first-best solution under the exogenous regime
and the first-best under the endogenous regime. The following Proposition shows that
with inefficient rationing, the effect of an endogenous regime is ambiguous on the social
welfare, which depends on the size of the negative effect previously described of the
capacity price and the gains in terms of avoided rationing cost.

Proposition 5. The delta in welfare with respect to the delta with exogenous price is:

∆W bo
1 (k) = ∆W1(k)−

∫ tw1 (k)

tw0 (k)

J(∆0k)f(t)dt−
∫ +∞

tw1 (k)

(J(∆0k)− J(∆1k))f(t)dt (13)

With W bo(k) − W bo
1 (k) = ∆W bo

1 (k). The endogenous reservation market provide a higher
social welfare compared to the exogenous case if and only if :∫ t0(k)

0

∫ q0(t)

q1(t)

(p(q, t)− c)dq f(t)dt+

∫ t1(k)

t0(k)

∫ k

q1(t)

(p(q, t)− c)dq f(t)dt <

∫ tw1 (k)

tw0 (k)

J(∆0k)

+

∫ +∞

tw1 (k)

(J(∆0k)− J(∆1k))f(t)dt

Proof. See Appendix

The new surplus when the optimal level of investment is reached is higher than with
an exogenous capacity price when the endogenization effect on the rationing cost (i.e.,
the two negative parts of∆W bo

1 (k), as we always have J(∆1k) ≤ J(∆0k)) is higher than
on the initial welfare (i.e., ∆W1(k)). Recall that ∆W1(k) represents the loss associated
with the effect of the capacity price on consumer demand. The first negative part in
∆W bo

1 (k) stands for the lower occurrence of on-peak periods due to the lower demand,
which reduces the rationing cost. The second negative part represents the loss avoided
because a lower consumer demand implies a lower consumer surplus, hence a lower
cost than the exogenous regime.

While there is an ambiguity regarding the new value of the welfare function, we find
that the newoptimal investment level is always lower thanwithout inefficient rationing.
That is we always have ∂∆W bo

1 (k)

∂k
≥ 0. Regarding the social welfare at the optimal in-

vestment level, it depends on the ambiguous effects described in Proposition 5.

Regarding some comparative statistics, the effect of themodel variables can be ambigu-
ous when we consider inefficient rationing. We start with the optimal payment to the
producer defined in equation 12 which is equal to the absolute value of the marginal
surplus loss associated with the inefficient rationing. Recall that it is composed of two
distinct parts (i) a positive value for the direct effect of the rationing on consumer wel-
fare and (ii) a negative value for the indirect effect because the loss is based on consumer
welfare. We find that the price cap and the demand intercept always have opposite
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signs between parts (i) and (ii). For instance, an increase in the price cap continuously
decreases the positive value associated with the rationing, but because it also decreases
consumer welfare when the price cap binds, it decreases the negative value, hence the
ambiguous effect.

IV. CAPACITY DEMAND ALLOCATION DESIGN

4.1. Retailers realized market share allocation

4.1.1. Market equilibrium

The previous approach is based on ex-ante requirements, meaning that the quantity
allocated to the retailers (or directly to the consumers) is independent of the demand’s
current realization. This section analyzes a specific implementation of the reservation
market demand where the capacity allocation depends on the retailers’ realized quan-
tity sold to the final consumers. The main difference with previous ex-ante require-
ments lies in the retailer profit function, where the capacity cost allocation act as an
additional marginal cost. We study how this new cost adder for retailers modifies the
previous results in light of different degrees of competition in the retail market. Un-
der competition à la Cournot, we find that having different numbers of retailers have
a direct effect on the cost allocation sustained by final consumers. Therefore, the de-
gree of competition determines the sign and the magnitude of the different outcomes
described in the ex-ante regime.

The first implication of ex-post requirements concerns the last stage when the retail
market clears. We rewrite the retailers’ profit function by including an endogenous
ratio in the retailer profit function, as shown in the following equation. Contrary to the
previous section, we do not need to assume any tariff hypothesis for the capacity cost
allocation as it directly affects retailers’ profit at the margin. We focus our analysis on
symmetric equilibrium.

πr
i (qi, k) = qi(p(q)− ps)− pc(k)k

qi
qi + q−i

We find the equilibrium using the first-order condition. The main results are stated in
the following Proposition:

Lemma 5. When the retail equilibrium exists it is always unique and stable. The condition for
the existence of an equilibrium is given by the following condition:

−kpc(k)

(
n− 2

n

)
1

q2
≤ pq(q) +

q

n
pqq(q)− ps

Proof. See Appendix

Using the first-order conditions and the symmetry between the retailers, the Cournot
equilibrium in the retailmarkets allows to define the endogenous retailer demand func-
tion in the wholesale market:
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p̃n(q) = p(q) +
q

n
pq(q)− pc(k)k

1

q

n− 1

n

The equilibrium in this market is similar to the case with the ex-ante requirement.
Therefore, we can define the periodic threshold between on-peak/off-peak/binding
price cap periods. We respectively denote them tn(k) and twn (k), with also qn(t) and
qwn (t) the quantity at which the wholesale price p̃n is equal to respectively the marginal
cost and the price cap. The wholesale market equilibrium does not necessarily exist
as the demand function is not well defined on wholesale quantity and prices. To see
this, recall the existing condition for the retail equilibrium. With a high value of q,
some retail equilibrium does not exist. Therefore the retail threshold also applies to the
wholesale market.

Given the investment and the variable revenue from the reservation market defined as
follow, we find the marginal opportunity cost that defines the supply function in the
reservation market and hence the final capacity price:

pc(k) = r −

(∫ twn (k)

tn(k)

(p(k, t)− c− pc(k)
n− 1

n
) f(t)dt+

∫ +∞

twn (k)

(pw − c) f(t)dt

)

Note the difference with the ex-ante requirement in the first part of the integrals, where
the capacity cost adders are dependent on n. The following Proposition summarizes
the main effect of an ex-post allocation:

Proposition 6. When allocating the reservation market cost is based on retailers’ realized mar-
ket share, it generates a lower depreciating effect on the demand. The ex-post regime provides
an intermediate indirect effect between an ex-ante regime with exogenous capacity price and an
ex-ante regime with endogenous capacity.

Proof. See Appendix

To illustrate this Proposition, the capacity cost adder when n = 2 is equal to half of the
cost adder of equation 7, and it is increasingwith n. When n → +∞, the capacity cost is
entirely allocated to the consumer, mimicking the ex-ante exogenous equilibrium. This
Proposition states that increasing competition in the retail market increases the burden
of consumers’ capacity prices. Hence, the negative effect observes in the regime with
endogenous capacity prices is now shared between retailers and consumers.

4.1.2. Extension - Reservation market and retail market structure

The previous results of our paper on cost allocation are independent of the market
structure in the retail market. However, in this extension and using our analytical
framework, we show that a change of market structure can have ambiguous effects
both in the reservation market outcome and with respect to the determination of the
optimal capacity level. This aspect of essential goods has been relatively less studied
than the supply side. Therefore, in this extension, we describe the effect of different
market structures on the optimal and market investment level and with and without
inefficient rationing.
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The market outcome under imperfect competition is the same as previously described:
k̄. The following reservation states that market power in the retail market lowers the
investment level beyond market power’s direct effect. The market investment level
is different from the optimal investment level even when we maximize the welfare
function given the market power in the retail market.28

Lemma 6. Imperfect competition in the retail market leads to a lower installed capacity com-
paredwith the optimal investment level given by the social welfaremaximization: k̄ ≤ k∗ ∀n ∈
[2,+∞). The optimal capacity payment z̄ is equal to the expectedmarkup of retailers in the retail
market:

zn(k) =

∫ +∞

t0(k)

−k

n
pq(k, t)f(t)dt (14)

Proof. See Appendix

We turn now to the analysis of the effect of the market structure on the model. First,
suppose there is no inefficient rationing. In that case, an increase in the number of re-
tailers has two effects of opposite sign : (i) an increase of the social welfare, which is the
common effect of higher competition in a canonical model à la Cournot (ii) a decrease
in the social welfare due to the lowering of the consumption associated with a higher
capacity cost allocated to the consumers. Both effects are defined in the equation 15
with the derivative of the welfare function with respect to the number of retailers. Un-
der our framework and without the ex-post regime, the demand is only affected by the
degree of competition during off-peak periods when t ≤ t(k),29 and the derivative is
always positive. However, the capacity cost allocation also has a depreciating effect on
the demand level at the marginal cost (recall equation 8), hence the ambiguous sign of
∂q(k)
∂n

.

∂W (k)

∂n
=

∫ t(k)

0

∂q(k)

∂n
(p(q(k), t)− c)f(t)dt (15)

A similar but more complex effect arises when considering inefficient rationing. Para-
doxically, lower competition in the retail market makes the rationing occurrences less
likely, which lowers the surplus loss. Note that as the surplus loss is only associated
with on-peak periods, the lowering of competition in the retail market does not affect
the size of the rationing cost but only its occurrence. We provide in the following equa-
tion the marginal effect of an increase of the number of retailers on the social welfare
when the rationing cost is based on a ratio as described in equation 10, as in the previous
equation, the sign of ∂qw(k)

∂n
is also ambiguous:

28This result has important regulatory implications. Indeed, we state that the welfare-maximizing
investment level given the imperfect competition in the retail market, is different from the welfare-
maximizing investment level in a perfectly competitive market. Therefore, the will to necessarily reach
a competitive investment level could cause significant harm, potentially greater than the welfare loss
generated by the inefficient market equilibrium.

29We drop the subscript for simplicity.
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∂W (k)

∂n
=

∫ t(k)

0

∂q(k)

∂n
(p(q, t)− c)−

∫ +∞

tw(k)

(
∂qw(k)

∂n

k

qw(k)2

∫ k

0

(p(q, t)− pw)dq)f(t)dt (16)

It is sufficient that the signs of the two derivatives be different so that the effect of im-
perfect competition on social welfare is clear. For instance if the increase of n increases
the surplus during the off-peak periods (∂q(k)

∂n
> 0) but decreases the rationing occur-

rence due to the capacity cost adder (∂q
w(k)
∂n

< 0) then the social welfare increases with n.
On the other hand, if n has the same effect on both quantity thresholds q(k) and qw(k),
then the role of imperfect competition on the outcome is ambiguous. For instance, if
the increase of competition increases thewelfare during off-peak periods (∂q(k)

∂n
> 0) but

also increases the demand at the price cap despite the capacity cost adder (∂q
w(k)
∂n

> 0),
then the effect is unknown and depend on the relative size of the welfare gain during
off-peak periods and the loss occurring during rationing.

4.2. Retailers individual allocation

We provide in this section an analysis of a new regime for the demand function in
reservation markets. Each retailer must purchase their capacities in the reservation
market in this implementation. An entity only monitors the level of capacities and
compares it to each retailer’s consumption. We show that this market design can only
bring additional welfare due to specific incentives when inefficient rationing exists. 30

One of the critical features of this regime concerns the case when a retailer is in nega-
tive deviation, i.e., has sold more on the retail market than he has bought capacity in
the reservation market. In this case, he suffers a penalty, which results in a payment
from the retailer to the entity31 by a unitary amount of S, with S ≥ 0 being an ad-
ministratively fixed value32. When every retailer has bought enough capacity, we are
under the no penalty case, and no other mechanism is implemented 33. The price in the
reservation market is still noted as pc(k), and the individual quantity contracted by a
retailer i is ki. Under this regime, we process the following to describe the equilibrium:
(i) We analyze the outcome with no uncertainty. We use a simple game theoretical
framework to describe a game’s equilibrium where agents must sequentially choose
a fixed capacity first and then compete à la Cournot on a second game. (ii) Then, we
extend our analysis to the initial framework developed in the model with investment
and reservation decisions made before the demand is known.

30A comparison between the case with and without inefficient rationing for this regime would be
relevant with additional hypotheses. For instance, the quality and quantity of information detained by
private agents such as retailers in future states of the world can be seen as better or worse than the
information detained by a single entity. While those specifications are outside the scope of this work,
they should call for a deeper application of the model presented in this paper.

31Which acts like the government is the model.
32We use in this paper a linear form of the penalty system, but some implementation can encompass

nonlinearities depending on the effect desired for the penalty system.
33Some remuneration mechanism can exist so to reward retailers who have provided additional ca-

pacity, but as we focus on symmetric equilibrium, they do not play a role in the outcome.
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4.2.1. Market equilibrium without uncertainty

To provide the intuition for the general case with uncertainty, we start by describing
the equilibrium in the case the demand is known when the retailer has to choose the
level of capacity to be bought in the reservation market. We show that it is a dominant
strategy to integrate the penalty value in the profit function as a marginal cost up to a
point where it is optimal to stop buying capacity and sustain the penalty.

Given the assumptions and notation, the retailers’ profit function during the last stage
in the retail market is:

πr
i (qi, ki) = qi(p(q)− ps)− pc(k)ki +

{
+0 if qi ≤ ki

−S(ki − qi) if qi > ki

The equilibrium on the retail market is given by the first order condition:

p(q) + qipq(q)− ps =

{
0 if ∀i qi ≤ ki

S if qi > ki

As the equation shows, the market design’s penalty system implies different discontin-
uous retailers’ reaction functions. The first case will be called the penalty case, while
the second one the noremuneration case. It depends on the capacities bought in the
reservation market by the retailer and his competitor and their strategies on the re-
tail market. The penalty system always induces a lower reaction function, whatever
is the sign of the retailer’s deviation from its position in the reservation market. It is
straightforward for the penalty system: amarginal increase in the retail market’s quan-
tity increases themarginal cost via the penalty. The capacities bought in the reservation
market do not directly affect the reaction function’s value, but it determines the form
of the reaction function between the penalty/noremuneration cases. We summarize in
the following Proposition the central insight of this game equilibrium.

Lemma 7. The set of dominant strategies in the retail market is:



[qp, qr] if pc(k) ≤ S

{0, ]qp, qr]} if pc(k) > S

∀q ∈]qpqr[ q is a solution of p(q) + qipq(q)− ps(q)− pc(q) = 0

With qr the equilibrium quantity offered on the retail market when the retailers are in the nore-
muneration case. This value is given by the solution of p(q) + qipq(q) − ps(q) = 0. qp is the
equilibrium quantity offered on the retail market when the retailers are in the penalty. This
value is given by the solution of p(q) + qipq(q)− ps(q)− S = 0.

Proof. See Appendix
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The optimal quantity on the retail and reservation markets depends on the difference
between the penalty value S and the capacity price pc(k). We assumed a linear penalty
system, so if the penalty is lower than the capacity price S ≤ pc(k), then it is a dom-
inant strategy (strict if S < pc(k)) to buy no capacity and sustain a penalty on all the
quantity sold on the retail market. Indeed, with strict inequality, the profit function
is a decreasing non-concave function with respect to ki. On the other hand, when the
penalty is higher than the price, the profit function is an increasing non-concave func-
tion with respect to ki. The dominant strategy is to buy the same amount of capacity as
the quantity qp, which corresponds to the retail market’s corresponding equilibrium in
the penalty case.

In this regime, the capacity price is passed on to the consumers, which increases the
marginal cost equal to the capacity price. In turn, it reduces the demand function on
the wholesale market. This result follows that the demand function in the reserva-
tion market strictly mimics an equilibrium quantity sold on the retail market when the
marginal cost increases without a reservation market. When the cap S is not binding,
those equilibria are given by the set [qp, qr].

Under this no uncertainty assumption and relying on the set of dominant strategies,
it is straightforward to extend the analysis to the optimal demand of capacity. Using
the results of 7, the demand function on the reservation market is a linear decreasing
function caped above at the penalty value while intersecting the null capacity price at
exactly qr which is the equilibriumwithout the reservationmarket. Any value between
corresponds to the equilibrium given by the solution of p(q)+qipq(q)−ps(q)−pc(q) = 0.
To say it differently, given a capacity price, retailers always buy the same amount of
capacity that their equilibrium in the retail market unless the price is above the penalty
value

On the supply side, following themarginalist approach, the supply function starts to be
non-null and positive at the same value qr. Therefore the equilibrium is always a null
price with a level of investment strictly equal to the regime without any reservation
market. Such counter-intuitive result stems from the fact that the reservation market is
only a burden for retailers under no uncertainty and without any other model refine-
ment, which does not encourage them to buy more capacities.

4.2.2. Social welfare under uncertain demand

In reality, retailers buy capacity before the demand is known. Hence, when building
their demand function in the reservation market, they must consider a range of possi-
ble outcomes relative to the production and demand levels. They need to expect the
occurrence of off-peak and on-peak periods and the rationing case when the price cap
is binding. The last situation is critical as it determines the magnitude of the penalty
payment bared by retailers. We start by providing the link between the previous anal-
ysis with no uncertainty and the general model. First, qr is the value qw0 (t) as it is the
Cournot outcome in the retail market34. Then, denote qwd (t) the value equal to qp, that
is the threshold at which ps(q) − S is equal to the price cap pw. In other terms, this is
the Cournot equilibrium when the marginal cost for the retailers is equal to pw + S. It
is similar to assuming a decrease in demand when retailers pass the penalty cost onto

34In fact, every value between q0(t) and qw0 (t) are conceptually equal to qr, but we focus on the thresh-
old case between the periods where the price cap is binding and not binding.
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the consumers. Finally, denote twd (k) the state of the world when the price cap starts
binding under the case the demand of final consumers is equal to ps(q)− S.

Following the no uncertainty case, the set [qwd (k), q
w
0 (k)] defines the set of dominant

strategies in the retail market for a wholesale price equal to pw and any capacity level
between 0 and the value qw0 . To see this, let us distinguish three cases depending on the
value of the installed capacity.

• (Case 1) When k > qw0 , the price cap is never binding, and the outcome is strictly
identical as a regime without a reservation market.

• (Case 2) For a value of k between qwd (k) and qw0 (k), we observe a paradoxical
outcome; rationing should have occurred as soon as k is below qwd (k) without
a penalty. It implies that retailers sustain the penalty, which is then passed to
consumers as a marginal cost, which lowers their demand. However, rationing
is not happening, which contradicts the demand’s decrease due to the penalty.
Therefore, as in the no uncertainty case, retailers follow the level of investment.
To do so, they increase the price of their consumers by a unitary amount of T (k)
so that at any state of the world between tw0 (k) and twd (k) the demand is equal to
the capacity k,35 that is we have ps(q)− T (k) = pw.

• (Case 3) Finally, k is below qwd (k), it is now optimal for the retailers to keep their
strategy at qw0 as it is the Cournot equilibrium given the penalty value S.36.

The distinction between the two different cases ((2) and (3)) is crucial as in the former
case (2) there is no inefficient rationing as the quantity sold by the retailers is equal k,
while in the latter case (3) inefficient rationing necessary occurs because retailers ask
for qwd (k) which is above k.

We can deduce the wholesale market outcomes using this set of outcomes on the retail
market. The following Proposition describes how the new welfare function encom-
passes the previous implications regarding the retailer strategy when we assume that
the initial capacity price is not passed onto the consumers via a unitary payment. 37

Proposition 7. The regime ambiguously impacts the welfare function, with a negative distri-
butional effect due to the penalty system and a positive effect due to reducing rationing costs.
The rest of the welfare function equals the no reservation market regime.

Wd(k) = W bo(k) −
∫ +∞

twd (k)

S(qwd (t) + k) +

∫ twd (k)

tw0 (k)

J(∆0k) +

∫ +∞

twd (k)

J(∆0k)− J(∆dk)f(t)dt

(17)

With ∆dk the new difference between the installed capacity and the quantity bought by the
retailers qwd (k)

Proof. See Appendix

35We could also assume the reverse mechanism where retailers pay consumers T (k) to reduce the
demand in order to avoid the penalty.

36Similarly, it is identical to the case where the benefice to pays consumers to lower their demand is
above the cost generated by the penalty.

37This additional feature of this regime would cause a similar effect as the outcome presented in the
endogenous ex-ante regime.
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The intuition behind the Proposition is as follows. For the second negative part of the
welfare function, the penalty S entirely affects the retailers’ profit margin. It implies
that both the retailers and the consumers suffered a surplus loss due to the demand
reduction. Added to the penalty cost borne by the retailer of S(qwd (k) − k), it gives the
net loss for the welfare function. The rationing cost reduction is directly linked to the
shift from qw0 (k) to qwd (k). Indeed, as stated before, any capacity k ∈]qwd (k)qw0 (k)] implies
equality between the quantity sold by the retailers and the capacity level k. Therefore,
there is a net increase in welfare. Note that the last term of the welfare function is
always positive as qwd (k) ≤ qw0 (k). It is similar to the effect observed in the endogenous
ex-ante capacity price, but it is limited to the rationing period in this regime. Therefore,
this regime avoids the negative effect of lower demand when there is no rationing and
optimal wholesale price.

4.2.3. Investment decision and reservation market equilibrium with uncer-
tainty

Assuming that the capacity price is not included in the variable price in the retail mar-
ket, we state that the supply function is not impacted by themarket design. Indeed, the
previous analysis shows that the demand function on thewholesalemarket is impacted
only when the price cap starts binding under no reservation market regime (i.e., when
k ≤ qw0 (k)). In case (2), the adjusted demand follows the capacity level, while in case
(3), inefficient rationing exists, but it still implies that demand equals capacity. There-
fore, the market design does not impact the occurrence and the magnitude of the rent.
The supply function is given by the equation 5 and the undistorted ϕ(k). Under this
configuration, we define the aggregated retailer profit function when the demand is
uncertain in the following equation:

πr(k, t) =

∫ t0(k)

0

−q0(t)
2

n
pq(q0(t), t)f(t)dt+

∫ tw0 (k)

t0(k)

−k2

n
pq(k, t)f(t)dt Case (1)

+

∫ twd (k)

tw0 (k)

k(p(k, t)− pw − T (k, t))f(t)dt Case (2)

+

∫ +∞

twd (k)

k(p(k, t)− pw − S)f(t)dt−
∫ +∞

twd (k)

S(qw0 − S)f(t)dt Case (3)

−pc(k)ki

The expected profit function comprises three main parts related to different values of k
given a demand level (or a different level of demand given a value of k). The two first
terms are the same with and without a reservation market as the price cap is not bind-
ing. The retail price rises while the wholesale price is fixed and equal to the price cap
for the second term. As explained in the previous analysis, between the two states of
the world tw0 (k) and twd (k), the demand decreases due to the retailers’ actions to avoid
paying the penalty. It is materialized by the transfer T (k, t) 38. When it is not prof-

38Note that if we assume that retailers pay the consumers to reduce their consumption, only the sign
changes.
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itable to reduce the demand given the penalty (when twd (k) is reached), then the new
demand is given by qwd (k), the retailer profit is in the fourth term, inefficient rationing
is implemented, and the retailers pay the penalty in the fifth term. The last term is the
capacity cost due to the retailer’s obligation to buy their capacities. Given this expected
profit, we can define the marginal value of a capacity for the retailer, which serves as
the retailers’ willingness to pay for an additional capacity.

Proposition 8. Under the market design, the retailers aggregated demand function in the reser-
vation market is equal to the marginal value of an additional capacity for their profit function.

Dc(k) = −
∫ tw0 (k)

t0

(
2

n
kpq(k, t) +

k2

n
pqq(k, t)

)
f(t)dt +

−
∫ twd (k)

tw0 (k)

(
2

n
kpq(k, t) +

k2

n
pqq(k, t)

)
f(t)dt

∫ +∞

twd (k)

(p(k, t)− pw + kpq(k, t)) f(t)dt+

Proof. See Appendix

The value of a capacity for a retailer depends on the effect a marginal variation brings
to its profit function. When the level of capacity increases, we can distinguish three
effects:

• (i) The decrease in the cost of the penalty during the case (3)
• (ii) An increase of the oligopolistic profit during on-peak periods when the quan-
tity offered is equal to the capacity; and

• (iii) A change in the occurrence of off-peak/on-peak and price cap-binding peri-
ods.

The effects (i) and (ii) do not directly appear in the demand function as they are entirely
offset. Indeed, for the penalty effect, while the increase of capacity lowers the marginal
cost of penalty byS, the retailer gains at the same time amarginal profit equal to p(k, t)+
kpq(k, t) − pw − S. Therefore, the marginal effect of the penalty is null, and the effect
during the case (3) is limited to an increase of the marginal profit, as illustrated in the
third term of the demand function. The effect (iii) of the occurrence of the different
periods cancel each other out because when qw0 (k) is reached, the value of T (k, t) is
null. While, when qwd (k) is reached the value of T (k, t) is equal to the penalty. Finally,
note that the first and second parts, which represent the net gain from an increase of
capacity for retailers, are always positive as the marginal revenue is always decreasing
following the initial assumptions regarding p(.)with respect to q (i.e., pq(.)+qpqq(.) < 0).

The last part is ambiguous and depends on the value of k relatively to the monopoly
outcome in thismodel. Indeed, note that p(k, t)+kpq(k, t)−pw is the first-order condition
of the retailermonopoly profit functionwithmarginal cost equal to the price cap. Given
its concavity, any value of k below the monopoly quantity implies a positive third part
in the demand function, while a value of k above implies a negative third part. It is a
sufficient condition that the Cournot outcome qw0 (k) bounds from below the monopoly

26



outcome for the third part be always positive. In other terms, this condition holds
whenever the penalty value is sufficiently high or with a low number of retailers. This
last part of the demand shows that retailers are willing to pay for capacity if it allows
them to reach (in expectation) the monopoly quantity when the price cap is binding.
In other words, they bid the expected marginal revenue that makes them indifferent
between being at the monopoly outcome or not buying more capacity, given that this
third part is positive.

Finally, the general equilibrium in the system is found by solvingDc(k) = pc(k). As the
supply function is entirely independent of the outcome, the general outcome analysis
is identical to the reservationmarket demand function analysis. For instance, it is suffi-
cient to state that an increase in the demand function due to the increase of the penalty
also increases the investment level. On the other hand, it can also indirectly affect the
optimal level of investment given by maximizing the welfare function. Therefore, the
comparative statistic for this regime’s welfare effect boils down to the same approach
described in the previous ex-ante case.

V. CLOSED-FORM SOLUTION AND APPLICATION TO THE ELECTRICITY
MARKET

5.1. Data for calibration to French capacity market

We now provide a closed-form solution of the model with a numerical illustration in
this section. We focus on the electricity system and consider the reservation market
as a capacity market, where producers can sell the availability of their power plant in
return for a capacity price. Following our general model, this transaction forces them
to have a given level of investment in the wholesale electricity market. This sectionwill
provide insight into the effect of each market design on an actual economic system and
allow us to give general policy recommendations for the power sector.

The main specification is the final consumers demand function, which is assumed lin-
ear, and where the uncertainty comes from the intercept of the linear function. We
define the inverse demand function as follow :

p(q, t) = a(t)− bq

Where a(t) is the uncertain intercept such as a(t) = a0−a1e
−t. We assume that t follows

an exponential distribution which is characteristic of electricity consumption : f(t) =
e−t.

Regarding the supply side of the system, we assume the marginal technology is a gas
power plant (CCGT) with variable cost (c) equal to 50.24 e /MWh, which includes fuel
and carbon costs. The fixed cost of the technology (r) is equal to 26.70e /MWh, which
includes investment and fixed operation costs. Those data come from the last report
for the International Energy Agency and represents an average investment in this tech-
nology for the OECD countries [13]

For the demand side, the calibration and the model results are highly sensitive to the
assumption regarding the value of the demand function. While there are many studies
on the value of the actual demand function of electricity, we still lack a proper view on
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the future characteristics of the demandwhen all consumers are price reactive, aswe as-
sume in this paper. Therefore, we provide in this numerical illustration some scenario
sensitivity. We use three different demand function scenarios : (i) Low elasticity such
as the Value of Lost Load (VoLL)39 is equal to 20000 e /MWh (ii) Medium elasticity
such as the VoLL is equal to 3000e /MWh (iii) High elasticity with a demand charac-
terization from [18]. In the first two cases, we proceed as follows to find the coefficients
a0, a1, and b. First, we find the maximum and minimum value of the hourly quantity
consumed on the electricity market. Given the French data, we find an amplitude of 30
000 MW and 102 000 MW for 2012-2020. Next, we assume that a price cap exists in the
wholesale market, and if its value is equal to the VoLL, then the market equilibrium
should be equal to the first-best solution in terms of investments level. Given this con-
dition and the magnitude of the demand, we can find the value of the coefficient a0, a1,
and b. To give an order of magnitude, the demand elasticity with respect to a price of
100e /MWh is equal to respectively: -0.0009, -0.04, and -0.53. The first scenario uses a
value assumed in our current systemwithmost consumers highly inelastic. The second
scenario uses the actual price cap on the French wholesale market. We use this value
as it is never reached and given that the elasticity using this value is close to what has
been empirically found for a small share of price reactive consumers [2]. The last sce-
nario allows assuming a hypothetical system’s future state where consumers are fully
priced reactive and highly elastic.

Finally, regarding the price cap value, we use it as a control variable to assess the effect
of different market designs; the range used in this paper is from 200 e /MWh to 3000
e /MWh. It allows us to represent both the current explicit price cap existing in the
wholesale market (at 3000 e /MWh) and other indirect inefficiencies that can have the
same effect on the expected rent for the producers. For the inefficient rationing, we use
the specification defined in equation 10.

The results of the numerical simulation are as follow. First, we provide the results with
respect to the first-best and market equilibrium, and we recall the main effect of this
canonical framework. Then, we discuss implementing a capacity market in the system
with no indirect effect (exogenous ex-ante design). Next, we show how allocating the
capacity price as a tax can modify the equilibrium (endogenous ex-ante design). Fi-
nally, we discuss the calibration of the retailers individual regime, and we compare its
outcome with the ex-ante design. An analysis of the imperfect competition in the retail
market is provided in the Appendix section, where we study its effect for the canonical
model, the retailers realized market share regime, and the individual allocation one.

5.2. First-best and market equilibrium investment

Following the model specification, the welfare function is concave, ensuring a first-
best solution exists. We start with the first-best analysis of the simulation without
inefficient rationing, and we provide in table 1 some critical indicators for different
scenarios. First, we express optimal investment levels in absolute terms and for the
maximum demand level. Intuitively and in line with the theory, when comparing the
different demand scenarios, we find that a higher elasticity leads to a lower optimal

39This concept, widely used in the electricity sector, relates to the case of inelastic demand. The VoLL
is the maximum price at which inelastic final consumers are willing to buy electricity; above it, the de-
mand is null. Therefore, in this numerical illustration, we expand the link between this concept and the
calibration of the elastic demand.
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investment, ranging from a delta of 0.19% of the maximal demand to 4%. However,
counter-intuitively, at first sight, the equilibrium price in the wholesale and retail mar-
ket is strictly the same between the different scenarios. Indeed in the expectation, it
should always cover both the fixed and variable costs. The difference has to be found
in themagnitude of the average offpeak and on-peak prices and the occurrence of those
periods. When the elasticity increases, the average peak price significantly decreases,
from 10025 e /MWh to 456e /MWh, with a respective maximum value equal to the
VoLL in the two first scenarios and to 863 e /MWh in the last scenario. While the aver-
age peak prices are inversely correlated with the elasticity, we find that peaks periods
occur more frequently under high elasticity. Therefore, investment is more binding
with a high elasticity system but generates lower prices.

When we introduce a price cap in the wholesale market, the market equilibrium can be
impacted. The effect depends on the value of the cap and the elasticity, which has the
opposite effect. Namely, a higher elasticity given a price cap tends to lower the ineffi-
ciency, while a more constraining price cap given an elasticity level tends to increase it.
The inefficiency seems to be stable for the different scenarios, with a delta in installed
capacity ranging from 0.65 % (compared to 0.19%) to 11.9% (compared to the 4%) of
the maximum demand. As expected, the social and consumer welfare is always lower
than the absence of a price cap. In terms of price equilibrium, we still have the equality
of the average price with the sum of the production costs. However, due to the price
cap, the expected peak prices are lower, and due to the effect on the investment, peaks
periods are occurring more frequently.

The existence of inefficient rationing in the system significantly affects the first-best
solution. In the low elasticity case, the optimal level of investment needs to be signifi-
cantly close to the maximum level of demand (0.03%). We observe the same effect for
the high elasticity with an optimal value of 0.71% compared to the 4% without inef-
ficient rationing. Under the market equilibrium, this inefficiency does not impact the
market outcome as it only affects the consumer surplus. Following our assumption,
the occurrence of inefficient rationing is the same as when the price cap binds on the
wholesale market. Under the low elasticity scenario, rationing occurs only 0.89% of the
time. This value increases when the elasticity is lower given a price cap, and of course,
increases when a price cap is lower. For instance, we observe a significant increase
between the two price caps under the high elasticity scenario.

From a welfare perspective, the cost associated with a price cap and the inefficient ra-
tioning crucially depends on the assumption on the elasticity and the price cap level.
The cost can vary between almost 2 million e under the medium elasticity scenario
with only the direct effect of the price cap, up to 150 million e when inefficient ra-
tioning is considered. The consumer surplus is lower when the elasticity is higher,
hence a lower cost. However, we still find significant figures ranging from 600ke to 9
million e without and with inefficient rationing.
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Figure 1: Supply function on a reservation market with the optimal payments (pw =
500)

5.3. Price equilibrium with the canonical capacity market

One of the critical components of the framework is the supply function built on the
reservation market. Using a marginal approach, we assume that if the producer were
to bids their investment availability, the supply function should represent themarginal
opportunity cost of providing a capacity at the margin as in equation 5. We show in
figure 1 the supply function (thick black line) on a reservationmarket with perfect com-
petition on the retail market and with a price cap at 500 $. The supply function is null
belowa critical investment value equal to themarket investment equilibrium. Note that
the supply function converges toward the fixed cost as the additional rent collected on
the wholesale market becomes null at a certain level of investment. On the same figure,
we have also represented the two optimal payments necessary to restore the first-best
solution, both when the price cap does not generate inefficient rationing and when it
does (with perfect competition in the retail market). As proven in the Proposition 2,
the intersection between the supply curve and the optimal payments coincides with
the first-best solution in terms of investment (represented with the two vertical lines).
Consequently, the capacity price at the equilibrium under the exogenous regime is lo-
cated at the two red dots depending on the inefficiency.

Following this framework, we derive some comparative statistics of the capacity price
with respect to the price cap level on the wholesale market with perfect competition in
the retail market. Figure 2 shows the different value for the capacity price given the
price cap when we both consider only the direct price cap effect and then add the in-
efficient rationing. Note the respective convexity and concavity of the capacity price.
This specific curvature stems from the value of the first-best solution with respect to
the price. Indeed, when only the price cap is considered, the first-best solution is con-
stant with respect to the price cap. On the other hand, when inefficient rationing is
considered, the first-best decreases with respect to the price cap.

We now compare the outcome of the simulation for the different scenarios, which are
provided in table 2. As described in the analytical section, the canonical framework
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Figure 2: Capacity prices with respect to the price cap

does not generate any indirect effect on the equilibrium compared to the first solution
regarding investment level and welfare, both for the consumer and the social surplus.
However, the capacity market impacts prices in the wholesale market and, by exten-
sion, in the retail market. First, we observe a decrease in the average wholesale price.
Therefore, the model aligns with the theory that a capacity market depresses electricity
prices compared to the optimal equilibrium. By construction, the difference with the
first-best equilibrium is strictly equal to the capacity price. Hence, we should observe
an inverse relationship between capacity prices andwholesale prices from a policy per-
spective. However, this is not strictly the case for on-peak prices. While the price cap
always implies a lower expected price than the first-best outcome, the average on-peak
price is also lower than the market equilibrium with no capacity market. We observe,
for instance, that in the low elasticity scenario, a difference of 154 e /MWh (a decrease
of 6%) in the average peak price compared to a capacity price of 19.39 e /MW. In the
high elasticity scenario, a similar effect is observed, with a decrease in the peak price
of 8.88e /MWh (5%) compared to a capacity price of 17.76 e /MW. Note that when
we consider inefficient rationing in the simulation, we should expect the effect of a
capacity market on the equilibrium prices to be stronger. Indeed, the new optimal in-
vestment level is always higher with rationing. Therefore the capacity price should
also be higher.

Finally, we observe a conflicting result for the consumer under our framework. Indeed,
when assuming an inefficiency from the price cap, the consumer surplus is strictly the
same as in the optimal situation. Indeed, the capacity price simulates themissing trans-
fer that should have happenedunder the optimal framework, which has a net null effect
on the consumer. On the other hand, we find in all scenarios a negative effect for the
consumer, compared to the social welfare40. Such results stem from the fact that the
consumers directly remunerate producers for their availability to avoid inefficient ra-
tioning under the capacity market. To say it differently, this loss can be understood
from a Pigouvian view as the necessary cost of internalization of the positive external-
ity generated by producers, net of the benefits brought by such internalization. Under
our simulation, it ranges from 2 565 e to 52 656.36 e .

40Consumers always gain from a capacity market compared to the market equilibrium.
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5.4. Welfare effect of an endogenous ex-ante reservation market

We now study the effect of allocating the capacity price directly on the consumers via
an increase in the unitary electricity price. We have demonstrated in Proposition 3 and
Lemma 2 that the effect is negative when we only consider the price cap as a source
of inefficiency. On the other hand, when rationing is considered, then an endogenous
capacity price can bring benefits in terms of social welfare at the first-best investment
level, as shown in Proposition 5. We use themethodology in the Proposition 4 to derive
the equilibrium for both cases.

We find two notable results with our numerical simulation : (i) the results are in line
with the analytical model, however (ii) the indirect effect does not bring significant
changes compared to the exogenous case. We provide in table 3 the main results for
the simulation. First, note that we do find a lower first-best investment level given
this endogenous framework. However, the change is only significant with the high
elasticity case with a maximum deviation of 0.14% from the initial optimal investment
level, and only if we consider inefficient rationing.

We also find the opposite effect on the social welfare described in the analytical section
from a welfare perspective. Without inefficient rationing, the loss from allocating the
cost onto the consumers ranges fromaminimumvalue of -1.8e under the low elasticity
case to -821.54 e for the high elasticity case. Moreover, we find that the cost associated
with thismarket design is higherwhen the elasticity is higher and the price cap is lower.
On the other hand, implementing this market design for the capacity market always
brings more social welfare for all scenarios when inefficient rationing is considered.
The gains range from 58.60 e under the medium elasticity case to 1741.02 e under the
high elasticity scenario.

Interestingly, when allocating the capacity price under this framework, the consumer
always loses in both cases compared to the previousmarket design. This loss can range
from 982e under the low elasticity scenario to 63239e under the high elasticity sce-
nario. Three different effects can explain the change in the consumer surplus between
the exogenous and endogenousmarket design : (i) the cost associatedwith the capacity
market (ii) the avoid loss due to the inefficient rationing (iii) a direct welfare loss due to
the increase in the electricity price. As expected and similar to the social welfare effect,
allocating the capacity price onto the consumer via a unitary tax always generates the
opposite effect (ii) and (iii). The first is always positive, and the second is always nega-
tive. With the simulation, we find that the gain in rationing costs is lower with higher
elasticity, and the loss in terms of welfare is higher under higher elasticity. Therefore,
the negative effect (iii) tends to be higher when the elasticity is also higher. On the
other hand, we find the sign of the first effect to be ambiguous in our numerical illus-
tration. Given our assumption and changing the market design from the exogenous to
the endogenous case, we should expect a loss in terms of higher capacity market cost
for consumers when the elasticity is low and a net gain when the elasticity is high. It is
explained by the ambiguous effect of changing themarket design on the capacity price.
We find that under the low elasticity scenarios, capacity prices are higher, and lower
under the high elasticity scenario. 41

41Recall investment level is always lower under the endogenous market design.
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5.5. Retailers individual allocation

5.5.1. Calibrating the model

We conclude the analysis of our numerical application with the retailers individual
regime. The critical concept to understand this regime is how retailers formulate the
demand function on the reservation market and transmit incentives to consumers be-
cause of the penalty system. Given the initial assumptions on the investment technol-
ogy, we can find the equilibria on the reservation market in terms of price and quantity
for different penalty levels, price cap, andmarket structure. One of themain challenges
this numerical illustration raises is that the regime never restores efficiency unless re-
tailers do not entirely pass the penalty cost onto the final consumers. More specifically,
we introduce in the general framework a ratio such as the final consumer demand func-
tion is only partially impacted when the price cap starts to bind and rationing occurs.
42 In other words, retailers need to sustain an additional cost with the penalty system
to induce sufficient incentives to buy capacities.

Our first takeaway is that this penalty ratio needs to be very high for the regime to pro-
vide enough incentives to retailers to buy capacities on the reservationmarket. To say it
differently, themarginal value of a capacity is relatively low for retailerswhenever they
can entirely pass the penalty cost onto consumers. In this case, as shown in the general
framework and under perfect competition, the marginal value for a retailer relies on a
monopoly quantity. In this numerical application, such quantity, when computed, is
also very low, which explains the findings. However, with a high α, the penalty sys-
tem induces a new value which stems from a tradeoff between buying more capacities
and sustaining the penalty cost. It translates retailers’ demand function to the right
and allows an intersection with producers’ supply function at a price above 0. We use
the numerical illustration to compute the couple value between the penalty value and
the penalty ratio that brings the same equilibrium as the first-best optimal value with
inefficient rationing. Under the three demand scenarios, the couple translates into a
convex function with a minimum value above 99.8%. To say it differently, when de-
signing the penalty system under this regime, policymakers need to impose to retailers
to sustain 99.8% of the penalty system when inefficient rationing occurs. Otherwise,
retailers do not buy sufficient investment in the capacity market. To give some order
of magnitude, if the policy market aims at ensuring the investment level equal to the
first-best without inefficient rationing, which is always lower than the previous one,
then the ratio is still significantly high with a minimum value of 99%. Given this model
calibration, we now turn to the comparison with the ex-ante regimes.

5.5.2. Ex-ante vs ex-post regimes

This section discusses under which conditions an retailers individual market design
can generate more or less efficiency than an ex-ante market design. Note that we do
not have any possibility for regulatory errors in our model. Therefore, our results rely
solely on the set of effects described in the theoretical framework.

42Initially, the final consumer demandwhen the penalty is allocated is p(q, t)−S, with a ratio α ∈ [0, 1]
it boils down to the same model except that the final demand is p(q, t)− (1−αS). If α = 1, then retailers
fully sustain the cost of the penalty system.
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This approach allows us to derive the following implication: the regulator can choose
the correct combination set of penalty value, and penalty ratio such as the equilibrium
in the capacity market given the supply function and the aggregate demand function
of retailers is equal to the first-best investment level with inefficient rationing 43 How-
ever, we find thatwhile it leads to the same equilibrium in terms of investment level, the
indirect effect of each set can be significantly different. More precisely, we can differ-
entiate between the set of penalty values and ratio, which gives higher social welfare
at the retailers individual regime equilibrium than the first-best social welfare in the
ex-ante regime equilibrium. We provide in table 4 the results of the simulation for the
former design under the three demand scenarios. The Max case represent the highest
possible welfare given the set of penalty value, the Min the minimum case, and Equal
the penalty value such as the equilibrium under the retailers individual regime is the
same as under the ex-ante regime

We first find that it is always possible to have a set of values that gives higher wel-
fare under the retailers individual market design. For the three scenarios, those values
vary significantly, which also illustrates the sensitivity of the retailers individual mar-
ket design concerning the demand assumptions when choosing the penalty system.
Namely, the penalty range from 11 million e /MWh for the low elasticity case to only
28 120.00e /MWh under the high elasticity to provide higher social welfare than the
ex-ante design. Those values are well above the actual penalty in France, for instance.
Under perfect competition in the retailer market, those findings stem from the fact that
when assessing the marginal value of an additional capacity, retailers only assess the
benefits and the costs during rationing periods when the price cap binds (see Proposi-
tion 8). Therefore, their demand function results from an expected assumption on the
rationing periods. Recall that this period should only be occurring at a maximum of
0.266% under a first-best optimum.

Regarding the origin of the gains in terms of social welfare, which vary between 150
e to 2222 e , we find that it comes mainly from the avoided rationing cost when the
price cap binds. More precisely, our numerical results show that the retailers individ-
ual market design never generates a rationing period compared to the ex-ante market
design, which only minimizes those costs. To say it differently, the indirect effect un-
derlines in the theoretical framework for the retailers individual regime fulfills its role
by reducing the occurrence of such periods. Indeed, recall that the penalty system in-
cites retailers to reduce their consumption whenever the investment level is between
the realized demand at the price cap and the realized demand adjusted by the penalty
at the price cap, hence avoiding inefficient rationing.

Finally, we find that the gain from a retailers individual market design is higher under
the high elasticity case. This result is particularly relevant with respect to a policy per-
spective as it demonstrates that such a regime seems to be more beneficial when final
consumers have reached a sufficient level for their demand elasticity with respect to
price.

43As in the theoretical framework, we do not discuss here a retailers individual market designwithout
inefficient rationing.
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VI. CONCLUSION AND DISCUSSION

This paper built a tractable framework to analyze multiple markets’ interdependences
for an essential good prone to underinvestment. We showed how the investment deci-
sions are affected by those markets, their structure (such as the degree of competition),
and, most importantly, their design. Our case study is the reservation markets that
were implemented to encourage producers to invest by providing an additional remu-
neration. Most of the literature on reservation markets has focused on the supply side,
where producers offer their availability on future transaction periods on the wholesale
market. Therefore, the demand side has been overlooked, even though some system
efficiency effects are well known. Current implementations show many options re-
garding the demand side’s design on reservation markets, as consumers do not have
proper incentives to buy capacities. Using our framework, we compare multiple mar-
ket designs and their implications. The first set of regimes is based on differentiating
the capacity cost allocation. The second set of regimes is represented by how the design
can account for current demand realization. We underline the different parameters that
can significantly affect the outcomes of a reservation market on investment decisions.
The single entity’s quantity can significantly affect prices and quantities on the three
markets and redistribution welfare between agents for the ex-ante case. One of the ad-
vantages of this framework relies on the possible extensions that we can implement,
besides providing a simple but complete vision. The rest of the section discusses two
issues that could be addressed in future research using this framework.

First, we initially assumed that consumers were fully reactive to retail prices. Such
assumptions do not describe the reality yet as illustrated in the electricity system, as
most small final consumers such as households are still under fixed-price contracts.
The study of final consumers’ heterogeneity and its implications for investment de-
cisions in the power system is an emerging trend. [16] and [18] provide a relevant
model close to the one presented in this paper. They show the effects of having those
two types of consumers with different investment decisions and a reservation market.
However, the author does not compare demand design options for reservationmarkets
or consider retailers. Therefore, implementing this new extension in our model could
shed light on the issue associated with power systems’ investment decisions. It could
also have a significant impact on retailers individual market design options. Indeed, if
we consider that some consumers cannot react to price, but retailers are still forced to
cover their consumption, the demand function’s formation in the reservation market is
significantly impacted.

Finally, we assume that future final consumer demand is commonly shared between
the different agents. A single entity, potentially regulated, and retailers could access
a different quantity and quality of information. For instance, we can assume that the
entity has only a global vision of the future demand, and hence she is prone to make
a more significant error forecast than retailers. On the other hand, retailers have pri-
vate access to more precise information on their client portfolio while sharing com-
mon information on the world’s future global states. Therefore, introducing these pri-
vate/common elements in our model could shed new light on the effect of reservation
markets and their market design options. Finally, in some current implementations,
the entity based its global forecast on retailers’ information. Consequently, the com-
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parison between the various regimes’ cases could be analyzed using game theory and
signaling.
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Figure A.1: First-best investment level under retail Cournot competition between an
ex-ante and ex-post market design

APPENDICES

APPENDIX - SECURING INVESTMENT FOR ESSENTIAL GOODS. HOW TO
DESIGN DEMAND FUNCTIONS IN RESERVATIONMARKETS?

A. DISCUSSION ON THE RETAIL MARKET STRUCTURE

1.1. Retail market structure and ex-post requirements

Proposition 6 states that allocating the capacity price onto the retailers and their realized
market share provide an intermediary indirect effect on the demand side. Namely, with
a less concentrated retail market, retailers tend to pass more the capacity cost onto the
consumers, mimicking the ex-ante regime with an endogenous price. In contrast, we
state that when the number of retailers tends to converge towards the same outcome
as the ex-ante regime, the difference with an ex-ante regime with exogenous capacity
price at the same degree of retail competition might differ with respect to the market
structure. This relation is illustrated in figure A.1 where we draw the evolution of the
first-best investment level for different numbers of retailers. The red line stands for the
exogenous case, while the black line considers the realizedmarket share in the outcome.
While the difference in terms of investment is relatively small for a very concentrated
retail market, it tends towiden as the number of retailers increases. Therefore, the point
of convergence is different, as shown in the figure.

One key element raised in this paper is the link between differentmarket structures and
the evolution of socialwelfare. In the analysis of thewelfare functionwith respect to the
market structure, we found that the latter can have an ambiguous effect. Indeed, recall
that increasing the number of retailers increases welfare during off-peak periods and
increases the capacity price allocated towards the consumers, hence decreasingwelfare.
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Figure A.2: Threshold price cap and the market structure couples for the sign of the
welfare function derivative with respect to the number of retailers

A similar effect can be found when we take into account inefficient rationing. In figure
A.2, we show the couple price cap - number of retailers for which the effect is null.
Namely, below the line on the first sub-figure, an increase in the number of retailers
always increases welfare, while above the line, it continuously decreases welfare. This
threshold is decreasing with respect to the price cap. Note the inverse relationship
whenwe consider inefficient rationing (with positive values below the line). In the first
case, only one effect is studied, while the second to opposite effect are considered. As
shown in the previous figures, the cost of inefficient rationing is high in social welfare,
which explained the outweigh of the first term by the second in the equation.

B. PROOF

2.1. Proof of Lemma 1
Similar to the proof of Lemma 1. Given the price cap, we define the inframarginal rent:

ϕw(k) =

∫ tw0 (k)

t0(k)

(p(k, t)− c)f(t)dt+

∫ +∞

tw0 (k)

(pw − c)f(t)dt (B.1)

Themarket investment level is equal to the optimal investment level only if the solution
of the following equality has the same solution as with the first-order condition of the
welfare function:

ϕw(k) + zw(k) = r (B.2)

Which is the case if and only if :

zw(k) = ϕw(k)−
∫ +∞

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt (B.3)
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Therefore the optimal payment is equal to the expected lost revenue between the opti-
mal price and the price cap:

zw(k) =

∫ +∞

tw0 (k)

(p(k, t)− pw)f(t)dt (B.4)

2.2. Proof of Proposition 1

The proof is straightforward and relies on the first order condition of the producer
profit function. Recall that without a reservation market the profit function:

πs
i (k) = ϕ(k)ki − rki (B.5)

As we are in a perfect competitive framework, ∂ϕ(k)
∂ki

= 0. Therefore the first-order con-
dition implies that the maximum is reached when ϕ(k) = r. It is the standard equilib-
rium condition for investment decisions. Given that the profit function is concave, any
deviation from this point generates a loss. Consequently, the marginal cost of bringing
an additional capacity when ϕ(k) < r is null as it is always profitable to do so for the
producer. On the other hand, when ϕ(k) > r, the producer is always incited to reduce
the capacity level unless given a remuneration. By construction, at the margin and in-
different between an additional capacity against a remuneration, the producer should
receive a payment equal to r − ϕ(k).

2.3. Proof of Proposition 2

Recall that when the supply function in the reservation market with a price cap in the
wholesale market is positive, it is equal to

X(k) = r − ϕ(k) = r −
∫ tw0 (k)

t0(k)

(p(k, t)− c)f(t)dt−
∫ +∞

tw0 (k)

(pw − c)f(t)dt (B.6)

We then find the intersection between the supply function and the optimal payment
functions given by the following equations:

zw(k) =

∫ +∞

tw0 (k)

p(k, t)− pwf(t)dt (B.7)

For instance, when X(k) = zw(k), then it gives:

r −
∫ tw0 (k)

t0(k)

(p(k, t)− c)f(t)dt−
∫ +∞

tw
(pw − c)ftdt =

∫ +∞

tw0 (k)

(p(k, t)− pw)f(t)dt (B.8)

When rearranged, we have:

r =

∫ +∞

tw(k)

(p(k, t)− cf(t)dt (B.9)
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Which is the condition for the first-best to be reached. The exact process can be applied
to the two other optimal payment functions. Therefore having a demand function at the
optimal investment level given the supply function in the reservation market is strictly
the same as providing producers with a payment whose value is given by the payment
function at the optimal investment level.

2.4. Proof of Proposition 3

First, we state in this proof that allocating the reservation price on the consumer as a
tax only affects the share between on-peak and off-peak periods and the surplus’s size
during off-peak periods.

We start by defining the consumer surplus without reservation market:

W c =

∫ t0(k)

0

∫ q0(t)

0

(p(q, t)− c)dqf(t)dt+

∫ tw0 (k)

t0(k)

∫ k

0

(p(q, t)− p(k, t))dqf(t)dt+∫ +∞

tw0 (k)

∫ k

0

(p(q, t)− pw)dqf(t)dt

(B.10)

Next, we define the new thresholds between offpeak and on-peak periods, when the
price cap starts to bind, and the new quantity of the good asked at a price c: t1, tw1 and
q1.

Then we define both the expected welfare for consumers and producers. We show
that they encompass at the same time the direct welfare loss and gain from the transfer
due to the reservation market but also the indirect effect due to the reservation price
allocation. The expected surplus for the consumer during off-peak periods is, therefore:

W c
offpeak =

∫ t1(k)

0

(−pc(k − q1) +

∫ q1(t)

0

(p(q, t)− c− pc)dqf(t)dt

=

∫ t1(k)

0

−pck +

∫ q1(t)

0

(p(q, t)− c)dq)f(t)dt

(B.11)

With pc the reservation price.

For the on-peak periods when the price cap is not binding, the consumer welfare is:

W c
peak =

∫ tw1 (k)

t1(k)

−pck+

∫ k

0

(p(q, t)−p(k, t)−pc)dqf(t)dt =

∫ +∞

tw1 (k)

∫ k

0

(p(q, t)−p(k, t))dqf(t)dt

(B.12)

For the periods when the price cap is binding, the consumer welfare is:

W c
cap =

∫ +∞

tw1

−pck +

∫ k

0

(p(q, t)− pw)dqf(t)dt (B.13)
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On the other hand, the producer welfare during offpeak periods is:

W p
offpeak =

∫ t1(k)

0

pckf(t)dt (B.14)

For the on-peak periods when the price cap is not binding, the producer welfare is:

W p
peak =

∫ tw1

t1(k)

pck + k(p(k, t)− pc − c)f(t)dt =

∫ tw1

t1(k)

k(p(k, t)− c)f(t)dt (B.15)

For the periods when the price cap is binding, the producer welfare is:

W c
cap =

∫ +∞

tw1

pck + k(pw − c)f(t)dt (B.16)

Whenwe add the different expectedwelfare for consumers and producers, we have the
pck parts canceled and the price cap pw. It gives the following expected social welfare:

W1(k) =

∫ t1(k)

0

∫ q1(t)

0

(p(q, t)− c)dq f(t)dt+

∫ +∞

t1(k)

∫ k

0

(p(q, t)− c)dq f(t)dt− rk (B.17)

The proof of ∆W1(k) relies on the difference between W1(k) and W (k). There is no
ambiguitywhen calculating itwith the integrals aswe always have q1(r) < q0(t), t0(k) <
t1(k) and tw0 (k) < tw1 (k).

Recall that:

W1(k) =

∫ t1(k)

0

∫ q1(t)

0

(p(q, t)− c)dq f(t)dt+

∫ +∞

t1(k)

∫ k

0

(p(q, t)− c)dq f(t)dt− rk (B.18)

We rearrange the occurrence terms:

W1(k) =

∫ t0(k)

0

∫ q1(t)

0

(p(q, t)− c)dq f(t)dt+

∫ t1(k)

t0(k)

∫ q1(t)

0

(p(q, t)− c)dq f(t)dt

+

∫ +∞

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt−
∫ t1(k)

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt− rk

(B.19)

We next rearrange the first term associated with the quantity at the marginal cost and
we add the the second term with the last one :

W1(k) =

∫ t0(k)

0

∫ q0(t)

0

(p(q, t)− c)dq f(t)dt−
∫ t0(k)

0

∫ q0(t)

q1(t)

(p(q, t)− c)dq f(t)dt

+

∫ +∞

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt−
∫ t1(k)

t0(k)

∫ k

q1(t)

(p(q, t)− c)dq f(t)dt− rk

(B.20)
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Note that the first and third term with isW (k). therefore

W1(k) = W (k)−
∫ t0(k)

0

∫ q0(t)

q1(t)

(p(q, t)− c)dq f(t)dt−
∫ t1(k)

t0(k)

∫ k

q1(t)

(p(q, t)− c)dq f(t)dt

(B.21)

2.5. Proof of Lemma 2

The proof relies on the analysis of the derivative of ∂∆W1(k)
∂k

. The derivative is equal to

∂∆W1(k)

∂k
=

∂t0(k)

∂k

∫ q0(t0)

q1(t0)

(p(q, t0)− c)dqf(t0) +

∫ t0(k)

0

−∂q1(k)

∂k
(p(q1, t)− c)f(t)dt

−∂t0(k)

∂k

∫ k

q1(t0)

(p(q, t0)− c)dqf(t0) +
∂t1(k)

∂k

∫ k

q1(t1)

(p(q, t1)− c)dqf(t1)

+

∫ t1(k)

t0(k)

(−∂q1(k)

∂k
(p(q1, t)− c) + (p(k, t)− c))f(t)dt

(B.22)

Note that the three terms with the derivatives of t0 and t1 are null. Therefore the equa-
tion boils down to:

∂∆W1(k)

∂k
=

∫ t0(k)

0

−∂q1(k)

∂k
(p(q1, t)− c)f(t)dt+

∫ t1(k)

t0(k)

(−∂q1(k)

∂k
(p(q1, t)− c) + (p(k, t)− c))f(t)dt

(B.23)

Finally, as k increases, the reservation price also increases as producers need a higher
remuneration to be indifferent. Therefore, the indirect effect on the demand side is
magnified. It implies that the sign of ∂q1(k)

∂k
is negative. In turn, the derivative ∂∆W1(k)

∂k

is fully positive. Hence, the new first-best solution in terms of investment level given
under the endogenous regime is always lower or equal to the first-best solution under
the exogenous level.

2.6. Proof of Proposition 4

The process is straightforward and relies on the inframarginal rent:

ϕw
1 (k) =

∫ tw1 (k)

t1(k)

(p1(k, t)− pc − k)− c) f(t)dt+

∫ +∞

tw1 (k)

(pw − c) f(t)dt+ pc(k) (B.24)

We determine first the system’s main components in terms of an exogenous value rep-
resenting the reservation price. We then express the inframarginal given this value,
and we equalize the supply function r−ϕw

1 (k) to this value. We solve the equation and
isolate the reservation price.
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Again, we express all the main components of the systemwith this new value. The rest
of the equilibrium follows.

2.7. Proof of Lemma 3
We define the expected producer welfare in the following equation:

W p
1 (k) =

∫ tw1 (k)

t1(k)

∫ k

0

(p(q, t)− c− pc)dqf(t)dt+

∫ +∞

tw1 (k)

∫ k

0

(pw − c)dqf(t)dt− rk (B.25)

The first order condition of the expected producer welfare function gives:

∂W p
1 (k)

∂k
= −∂t1(k)

∂k

∫ k

0

(p(q, t1)− c− pc)dqf(t1)dt+

∂tw1 (k)

∂k

∫ k

0

(p(q, tw1 )− c− pc)dqf(tw1 ) +

∫ tw1 (k)

t1(k)

(p(k, t)− c− pc)f(t)dt

−∂tw1 (k)

∂k

∫ k

0

(pw − c)dqf(tw1 )dt+

∫ +∞

tw1 (k)

(pw − c)f(t)dt− r

(B.26)

Note that p(q, t1) = c and p(q, tw1 ) = pw so the the first term is null, and the terms with
the derivative of tw1 cancel each other. It implies that:

∂W p
1 (k)

∂k
=

∫ tw1 (k)

t1(k)

(p(k, t)− c− pc)f(t)dt

∫ +∞

tw1 (k)

(pw − c)f(t)dt− r (B.27)

On the other hand, the expected social welfare is:

W1(k) =

∫ t1(k)

0

∫ q1(t)

0

(p(q, t)− c)dq f(t)dt+

∫ +∞

t1(k)

∫ k

0

(p(q, t)− c)dq f(t)dt− rk

The first order condition of the expected welfare function gives:

∂W1(k)

∂k
=

∂t1(k)

∂k

∫ q1(t1)

0

(p(q, t1)− c)dq f(t1) +

∫ t1(k)

0

∂q1(k)

∂k
(p(q1, t)f(t)

−∂t1(k)

∂k

∫ k

0

(p(q, t1)− c)dqf(t1) +

∫ +∞

t1(k)

(p(k, t)− c)f(t)dt− r

(B.28)

Again, note that q1(t1) = k, therefore the first and the third term of the equation cancel
each other. It implies that:
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∂W1(k)

∂k
=

∫ t1(k)

0

∂q1(k)

∂k
(p(q1, t)f(t) +

∫ +∞

t1(k)

(p(k, t)− c)f(t)dt− r (B.29)

Reaching the equality between the first-best and market equilibrium requires that the
current derivative with the additional capacity remuneration is equal to the derivative
of the social welfare, that is ∂W1(k)

∂k
=

∂W p
1 (k)

∂k
+ z1(k). Therefore we need to have the

following equality

∫ t1(k)

0

∂q1(k)

∂k
(p(q1, t)f(t) +

∫ +∞

t1(k)

(p(k, t)− c− pc)f(t) =∫ tw1 (k)

t1(k)

(p(k, t)− c− pc)f(t)dt

∫ +∞

tw1 (k)

(pw − c)f(t)dt+ z1(k)

(B.30)

Which gives the optimal payment z1(k)

2.8. Proof of Lemma 4
In this case, the inframarginal rent is the same as the case with a price cap only. On the
other hand, the new welfare function is:

W bo(k) = W (k)−M(k) (B.31)

The first order condition is similar to those in the previous proof:

∫ +∞

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt−Mk(k) = r (B.32)

Themarket investment level is equal to the optimal investment level only if the solution
of the following equality has the same solution as with the first-order condition of the
welfare function. Because the inefficient rationing is due to the price cap, the optimal
payment includes de facto zw(k) to restore the optimal investment level. We derive
here only the additional part relative to the rationing.

ϕ(k) + zbo(k) = r (B.33)

Which is the case if and only if :

zbo(k) = ϕ(k)− (

∫ +∞

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt−Mk(k)) (B.34)

Therefore the optimal payment is equal to the marginal surplus loss due to inefficient
rationing.
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zbo(k) = Mk(k) (B.35)

2.9. Proof of Proposition 5

The first part of the difference can be found in the proof of Proposition 3. Now recall
that, in the case of an exogenous market design, or without reservation market, the
system cost associated with inefficient rationing is equal to:

M0(k) =

∫ +∞

tw0 (k)

J(∆0k)f(t)dt (B.36)

In the case of an endogenous market design, it becomes:

M1(k) =

∫ +∞

tw1 (k)

J(∆1k)f(t)dt (B.37)

With∆1k, the new function representing the difference between the quantity consumed
at the price cap qw1 (k)and the investment level.

Therefore, it is straightforward to show that the gain or the loss can be expressed as
follow:

M0(k)−M1(k) =

∫ +∞

tw0 (k)

J(∆0k)f(t)dt−
∫ +∞

tw1 (k)

J(∆1k)f(t)dt (B.38)

Recall that tw0 < tw1 , therefore we rearrange the expression as follow:

M0(k)−M1(k) = −
∫ tw1 (k)

tw0 (k)

J(∆0k)−
∫ +∞

tw1 (k)

(J(∆0k)− J(∆1k))f(t)dt (B.39)

Finally, we know that J(∆0k) > J(∆1k), as an exogenous market design, always im-
plies higher system costs when rationing occurs given a value of k. Indeed, everything
else being equal, the demand is lower under the endogenous case.

2.10. Proof of Lemma 5
The profit function of retailers is defined as follow:

πr
i (qi, k) = qi(p(q)− ps)− pc(k)k

qi
qi + q−i

(B.40)

Given the retail market structure, the first-order condition of the profit function under
a competition à la Cournot implies that

p(q) + qipq(q)− ps − pc(k)k
q−i

(qi + q−i)2
= 0 (B.41)

And the second order condition:
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2pq(q) + qipqq(q)− pc(k)k
q−i

(qi + q−i)3
= 0 (B.42)

The cross derivative of the profit function with respect to the competitor q−i is:

pq(q) + qipqq(q)− pc(k)k
q−i − qi

(qi + q−i)3
= 0 (B.43)

With n symmetric retailers and q the total quantity, the last equation becomes:

pq(q) +
q

n
pqq(q) + pc(k)k

(n− 2)

n

1

q2
= 0 (B.44)

The condition for existence requires that the cross derivative be positive, which estab-
lishes the condition of the Lemma. The stability and the uniqueness of the equilibrium
are given by the second-order condition, which is always negative.

2.11. Proof of Proposition 6

The proof is straightforward and relies on the depressing effect generated at themargin
on retailers’ profit function. In this case, this form of allocation is similar to an increase
in the marginal cost of production passed onto consumers.

Similar to the endogenous market design, this additional marginal cost is sustained
whatever is the realization of the demand level for final consumers. Therefore, it low-
ers the quantity bought in the offpeak periods and lowers the prices in the peak periods.
However, the effect is not as significant as in the endogenous case, as, under our frame-
work, retailers do take into their welfare part of the capacity cost allocation, and they
do not fully transfer this new marginal cost onto the consumers.

2.12. Proof of Lemma 6
The welfare function is given by

W (k) =

∫ t0(k)

0

∫ q0(t)

0

(p(q, t)− c)dq f(t)dt+

∫ +∞

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt− rk (B.45)

The first order condition gives the optimal investment level:

∫ +∞

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt = r (B.46)

Regarding the market investment level, we define the inframarginal rent under
Cournot competition:

ϕ(k) =

∫ +∞

t0(k)

(ps(k, t)− c)f(t)dt (B.47)
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Themarket investment level is equal to the optimal investment level only if the solution
following equality has the same solution as with the first order condition of the welfare
function:

ϕ(k) + zn(k) = r (B.48)

Which is the case if and only if :

zn(k) = ϕ(k)−
∫ +∞

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt (B.49)

Therefore the optimal payment is equal to the expected markup of retailers.

zn(k) =

∫ +∞

t0(k)

−k

n
pq(k, t)f(t)dt (B.50)

2.13. Proof of Lemma 7
We denote the value qr, the equilibrium quantity offered on the retail market without
reservationmarket. This value is given by the solution of p(q)+qipq(q)−ps = 0. We also
denote the value qp the equilibrium quantity offered on the retail market when the re-
tailers sustain the penalty. This value is given by the solution of p(q)+qipq(q)−ps−S = 0.
By construction, we necessary have qr > qp. Now that we found the equilibrium in the
retail market, we can derive the reservation market’s demand function. We charac-
terize the symmetric equilibrium, and we left the asymmetric equilibrium for future
extensions of this paper.

By construction, if retailers buy the same quantity in the reservation market, the retail
market equilibrium is also symmetric. We start by defining which equilibrium exists
in the retail market, given the capacity level. There are only three possible cases, each
with a unique equilibrium on the retail market:

i k > qr. All retailers are in positive deviation. However, the equilibrium in the
retail market is still qr as it is the Cournot equilibrium.

ii qr ≥ k > qp. All retailers have bought the same quantity in the reservationmarket
that they have sold on the retail market. The equilibrium in the retail market is k.

iii qp ≥ k. All retailers have not bought enough capacity, and all retailers have to
pay penalties. The equilibrium in the retail market is qp.

We provide in figure B.1 an example of the three cases based on a different level of
capacity. The capacity level ki and k−i are represented respectively by the horizontal
and vertical line. In the first subplot, the level capacity is low, and it is an equilibrium to
stay in the penalty system (case (iii)). Notice in particular that retailer profit function is
continuous but not differentiable at qi = ki, which induces the case without the penalty
at ki and k−i. In the second figure, retailers buy the same amount of capacity (case (ii)).
In the third, equilibrium is the case (i).

Next, to find the equilibria set in the reservation market, we start by determining the
dominant strategies for the three previous cases. The equilibrium is then the strategy
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Figure B.1: Best reaction functions for two retailers in a linear case

that brings the highest profits. It is straightforward that in cases (i) and (ii), it is a dom-
inant strategy (strict if pc > 0) to buy the same amount of capacity as the quantity in the
retail market. Indeed, the retail’s optimal quantity is the same as without reservation
market, and buying additional capacities does not bring any remuneration. Therefore,
it is always optimal to buy what is strictly necessary 44.

The optimal quantity of capacity bought in case (iii) depends on the difference between
the penalty value S and the reservation price pc(k). We previously assumed a linear
penalty system, so if the penalty is lower than the reservation price S ≤ pc(k), then it is
a dominant strategy (strict if S < pc(k)) to buy no capacity and sustain a penalty on all
the quantity sold on the retail market. Indeed, with strict inequality, the profit function
is a decreasing non-concave function with respect to ki. On the other hand, when the
penalty is higher than the price, the profit function is an increasing non-concave func-
tion with respect to ki. The dominant strategy is to buy the same amount of capacity as
the quantity qp which corresponds to the retail market’s corresponding equilibrium in
the penalty case. Therefore, the set of dominant strategies in the retail market is:



[qp, qr] if pc(k) ≤ S

{0, ]qp, qr]} if pc(k) > S

∀q ∈]qpqr[ q is a solution of p(q) + qipq(q)− ps(q)− pc(q) = 0

44Retailer profit function is a decreasing functionwith respect to k aswe assume retailers do not behave
strategically in the reservation market.

53



2.14. Proof of Proposition 7

The proof relies on the three cases describes in the corresponding section.

First, we showed that when the price cap is never binding (case 1), the market design
does not indirectly affect the demand side.

Second, when the price cap starts to bind, but retailers prefer to lower their demand
rather than sustaining the penalty (case (2), the indirect effect does not appear in the
social welfare function. Indeed, under this case, the capacity is binding, so a decrease in
the demand due to a price increase only redistributes the welfare between consumers
and producers.

Finally, the only indirect effect of this design exists when inefficient rationing occurs,
that is, when retailers always sell at a quantity equal to qwd (k). This case implies that both
the retailers and the consumers suffered a surplus loss due to the demand reduction.
Added to the penalty cost borne by the retailer of S(qwd (k)− k), it gives the net loss for
the welfare function. The gains in terms of rationing cost avoided are similar to the
demonstration of Proposition 5.

2.15. Proof of Lemma 8
The three indirect effects described in the market design also impact how retailers’
profit functions can be expressed. Using the same logic as for the expected producer
and consumer welfare, we have the following expression for retailers’ expected wel-
fare.

πr(k, t) =

∫ t0(k)

0

−q0(t)
2

n
pq(q0(t), t)f(t)dt+

∫ tw0 (k)

t0(k)

−k2

n
pq(k, t)f(t)dt+∫ twd (k)

tw0 (k)

k(p(k, t)− pw − T (k, t))f(t)dt+

∫ +∞

twd (k)

k(p(k, t)− pw − S)f(t)dt−∫ +∞

twd (k)

S(qw0 − k)f(t)dt− pc(k)ki

(B.51)

The demand function of retailers in the reservation market is found by the first order
condition of their profit function:
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πr(k, t) = −∂t0
∂k

q0(t0)
2

n
pq(q0, t0)f(t0) +

∂t0
∂k

k2

n
pq(k, t0)f(t0)−

∂tw0
∂k

k2

n
pq(k, t

w
0 )f(t

w
0 )

+

∫ tw0 (k)

t0(k)

(
2k

n
pq(k, t

w
0 )−

k2

n
pqq(k, t

w
0 ))f(t)dt−

∂tw0
∂k

(k(p(k, tw0 )− pw − T (k, tw0 ))f(t
w
0 ))

+
∂twd
∂k

(k(p(k, twd )− pw − T (k, twd ))f(t
w
d )) +

∫ twd

tw0 (k)

(p(k, t)− pw − T (k, t) + kpq(k, t)−
∂T (k, t)

∂k
)f(t)dt

−∂twd
∂k

(k(p(k, twd )− pw − S)f(twd )) +

∫ +∞

twd

(p(k, twd )− pw − S + kpq(k, t))f(t
w
d )dt

−∂twd
∂k

S(qw0 (t
w
d )− k)f(t)−

∫ +∞

twd

−Sf(t)dt− pc(k)

(B.52)

Note that: q0(t0) = k, so the two first terms cancel each other. The third term is null.
The fifth term is also null as p(k, tw0 ) = pw, and T (k, t) is null at tw0 as we are at the
boundary of the case (2). Similarly, at the opposite boundary tdw we have T (k, tdw) = S,
so the sixth and the eighth term cancel each other. Finally, the eleventh term with the
expected value of the penalty enters and cancels the penalty value in the seventh term.
Finally, the tenth term is null as qw0 (twd ) = k.

The first-order condition allows isolating the reservation price, which is the demand
function in the reservation market.
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