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ABSTRACT:  

Electricity generated by renewable energy sources creates a downward pressure on wholesale prices 
through - the so-called “merit order effect”. This effect tends to lower average power prices and 
average market revenue that renewables producers should have received, making integration costs of 
renewables very high at large penetration rate. It is therefore crucial to determine the amplitude of 
this merit order effect particularly in the context of increasing burden of renewable support policies 
borne by final consumers.  Using hourly data for the period 2009-2012 in German electricity 
wholesale market for GARCH model under panel data framework, we find that wind and solar power 
generation injected into German electricity network during this period induces a decrease of 
electricity spot prices and a slight increase of their volatility. The model-based results suggest that the 
merit-order effect created by renewable production ranges from 3.86 to 8.34 €/MWh which implies to 
the annual volume of consumers’ surplus from 1.89 to 3.92 billion euros. However this surplus has not 
been re-distributed equally among different types of electricity consumers. 

Keywords: German electricity markets, Intermittent generation, Feed-in tariff, Merit-order effect, 
GARCH, panel data.  
 
 

1. INTRODUCTION 
 
The European electric power sector has experienced an exceptional policy trend that fundamentally 
reshaped the industry over the last decade: the intrusion of environmental-related policies. Germany 
is perhaps the most distinguished example of this energy policy trend. The next day of nuclear 
catastrophe in Fukushima in 2011, the German government decided to accelerate the phase-out of 
nuclear fleet by 2022, starting with the immediate closure of the eight oldest nuclear plants. 
Although fossil fuels fired energy has to put in place during the transitional period, renewable 
electricity generation is being considered as cornerstone of current and future energy supply. In 
2011, wind, hydro and solar supplied together 20% of electricity consumption in Germany and this 
share should increase to 35% by 2020 and 80% by 2050. This is apparently ambitious. 
 
Developing renewable energy taking into account all challenges requires a carefully designed 
connection policy. In Germany, a lot of support policies for the development of renewable electricity 
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generation have been put in place. The perhaps most popular support scheme has been "feed-in-
tariff" mechanism put in place since 1991. The conditions of the German support scheme were 
revised in 2000, 2004 and 2010 (See more in Fulton, Capalino and Auer [2012]; The Renewable 
Energy Sources Act (Erneuerbare Energien Gesetz - EEG, [2012]). According to this law, all electricity 
generated from renewable energy sources must be purchased and transmitted with priority by the 
grid operators at a guaranteed feed-in-tariff. The loss suffered by the system operator due to the 
difference between market price and tariff is compensated by all consumers. 
 
On one hand, this support scheme has increased the burden borne by final consumers. In the period 
from 2007 - 2012 for instance, the net support expenditures for renewable electricity rose from 3.6 
to 18 billion euros, the highest level in Europe. Over 2008-2012, household electricity bills increased 
by over 22% largely due to the surcharges of renewable subsidy. This has raised concerns over the 
efficiency of the renewable support schemes. On the other hand, an important aspect that must be 
considered in the discussion is that electricity generated by renewable energy sources creates a 
depressive effect (or merit-order effect) on power prices. This effect, in turn, increases consumers’ 
surplus while raising high integration cost of renewables to the power system.  In this context, an 
economic assessment of the merit order effect is necessary.  
 
There have been several papers attempting to evaluate this effect, among those are, for example, 
Sensfuss, Ragwitz and Genoese [2008] and Weigt [2009] using electricity simulation models; 
Gelabert, Labandeira and Linares [2011], Wurzburg, Labandeira and Linares [2013], Cludius, 
Hermann, Matthes and Graichen [2014], Ketterer [2014] using econometric regressions. This paper 
applies the latter approach. Though each paper takes different approaches, they essentially come up 
with similar conclusions: there is a decrease of electricity spot prices as wind power penetration 
increases. However, regarding econometric modeling, none of these papers take into account the 
distinguished feature of the data in electricity market. Indeed, electricity is the unique market where 
there exist 24 different prices for 24 hours per day due to the combination of strong variability of 
demand for electricity and non-storability of electricity. Most papers employ daily aggregated data or 
single pooled time series. Using average data might remove the variation of parameters in short run 
and treating the hourly prices as a single time series is not an appropriate methodology as prices for 
24 hours of the following day are determined simultaneously on the day ahead. Any attempt to 
model electricity price should take this into account. 
 
In this paper, we consider a different modelling strategy: we treat the data as a panel framework 
and apply the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model for the 
panel dataset. This modelling approach is not only highly relevant with data on electricity spot 
market but also allows taking into account the variation of hourly solar production. 
 
The paper proceeds as follows. Section 2 describes the merit order effect and its impact on market 
values of renewables. Section 3 discusses different models to evaluate the merit-order effect of the 
intermittent electricity generation that have been employed in literature. Section 4 describes the 
data and specifications for modelling strategies. Section 5 employs the GARCH model to estimate the 
relationship between spot prices and wind/solar power generation for panel dataset from October 
2009 to December 2012 in German wholesale electricity market. Section 6 concludes the paper.  
 
 

2. MERIT-ORDER EFFECT AND ITS IMPACT ON MARKET VALUE OF RENEWABLES 

Electricity generated from renewable, though being inexpensive in term of variable cost, is very 
costly to develop in large scale due to its unpredictability and intermittence3. This creates a 
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discouragement for suppliers to invest in this type of energy. In this context, energy policies must 
give enough incentives so that wind companies would be likely to guarantee their profits to offset 
the disadvantages borne from the intrinsic lower value of intermittent output. 
 
In Germany throughout the past 15 years, the development of renewable energy has been driven 
mainly by Feed-In Law4, first introduced in 1990, otherwise known as the Electricity Feed-In-Law. This 
law was modified in several ways in April 1998 and in 2000, with the introduction of the Renewable 
Energy Sources Act (Erneuerbare Energien Gesetz (EEG)) in response to the deregulation of German 
electricity market in 1998. Feed-in law is a mechanism which assures the obligation and priority of 
the integration of electricity output produced by renewables into the market no matter how 
conditions of classic thermal capacities are. The technical and commercial responsibility of this 
integration is supported by the system operator, who has been obliged to take the delivery of 
renewable electricity generation and put it immediately on the market. The German wind/solar 
generators sell their output to the system operators at a guaranteed tariff. The conditions of the 
German feed-in tariffs were revised in 2004, 2009 and 2011. The latest EEG amendment (EEG 2012) 
dates from 20 December 20125. This mechanism is financially neutral for renewable producers 
because they are paid at fixed tariffs which are independent from the conditions of supply and 
demand that determine the market price. If the market price is lower than the tariff, the loss suffered 
by the system operator is compensated by all consumers. Renewable generators will have no 
incentives to restrain their output, even if market conditions are particularly unfavorable. Thanks to 
the support scheme, the installed wind turbine capacity in Germany has increased with a factor of 
five over the last ten years, from 6 GW in 2000 to 31.3 GW in 2012, and that of photovoltaic has 
raised from only 100 MW in 2000 up to 32.6 GW in 2012.  
 
The implementation of feed-in-tariff support scheme; however, has received a lot of critics. First, the 
burden borne by final consumers are too high. It is important to note that German retail prices of 
electricity is at the highest level in Europe except those of Denmark - European champion for CO2 
emissions and the development of wind power. The extra costs that German final customers have to 
bear due to the difference between market prices and guaranteed tariff for renewable generators 
made retail prices even higher. This extra cost, the EEG-Umlage, is expected to increase from 5.3 
ct/kWh in 2013 (20% of total 2013 price) to around 6.2 ct/MWh in 2014. Electricity prices for 
household consumers in Germany comprise around 40 - 45% of all taxes and levies, of which the 
EEG-Umlage constitutes about 30 - 40% according to the data from Eurostat. Over 2008-2012, the 
electricity bills for median household consumers (whose consumption is between 2500 kWh and 
5000 kWh) increased by over 22% largely due to the surcharges of renewable subsidy. Other issues 
bound to renewable production and its support scheme are the perverse effect on equilibrium prices 
(the phenomenon of negative prices) and negative externalities on neighboring network systems. 
Negative prices are the consequence of two coincident events: a low demand and a very high level of 
wind which makes off-shore wind turbines in the Baltic run at full speed. When this situation occurs, 
the conventional thermal plants are required to back down. Since the temporary shut-down of a base 
load plant can become more expensive than maintaining operations without revenues, some 
conventional generators, prefer to produce and pay an operator who could accept to take the 
electricity rather than shut down their plants and suffer the startup costs. It would be the Swiss 
generators, who dispose a high capacity of pumped storage hydroelectricity, would be paid for 
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evacuating this excess electricity. This phenomenon represents a de-optimization of electricity 
system and induces growing concerns over the efficiency of the support scheme as long as the 
solutions to economic storage of electricity in large scale are not available yet. Furthermore, a 
network externality occurs as electricity generated from wind turbines in the Baltic Sea cannot be 
evacuated directly to the locations of high consumption in the southern of Germany. Given the 
interconnected European network system, this electricity would be transported via Poland or the 
Czech Republic before reaching the final consumers in the Southern locations - big industries in the 
state of Bavaria. Any issue induced by the network is now mutualized. The customers in these 
neighboring countries would have to participate in the costs of reinforcing the transmission lines so 
that foreign generators could deliver their excess electricity.  
 
These observations are quite disturbing for the development of renewable energies through feed-in 
tariff scheme. However, an important aspect that must be considered in the discussion is that 
electricity generated by renewable energy sources creates a downward pressure on wholesale prices 
through the so-called merit order effect. While wind generators are paid at a fixed tariff and do not 
participate directly to spot market, wind output does have impact on the spot market prices. In fact, 
when wind generation is put in the merit order, it takes the value of "zero marginal cost", and since it 
will be the first to be dispatched, generation from other energy sources must move to the right of 
merit order curve. This analysis is applied analogously to other types of intermittent generation. 
 
 
 
 
 
 
 
 
Figure 1. Merit order with and without fed-in wind tariff 

 
 
Source: Benhmad and Percebois (2013) 
 
Figure 1 illustrates the difference between a logic of merit order based on average costs and a logic 
of merit order based on marginal cost. Electricity generated by wind energy, albeit zero fuel cost, has 
the highest average cost because the overnight cost (unit capital cost) is relatively high, particularly 
wind off-shore, and its load factor is relatively low: 26% and 43% for onshore and offshore as 
compared to 85% of nuclear or other thermal plants (OECD-IEA [2010]). However, in a logic of merit 
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order based on marginal cost, wind generation will be the first to be dispatched since it takes the 
value of "zero marginal cost". As consequence, generation from other sources must move to the 
right of merit order curve, thus at a given demand, market price decreases. This is illustrated in figure 
1.b where merit order effect is represented by the difference between 𝑃1 and 𝑃2.  
 
Merit order effect tends to create surplus for consumers who buy electricity at wholesale prices. 
However, this increase is not equivalent to increases in total net welfare. Conventional producers are 
receiving lower profits because a part of their surplus is transferred to the consumers. The costs for 
the overall system will increase with high integrated renewable largely due to this merit order effect. 
This observation refers to market value loss of intermittent renewable, which has been discussed 
recently in Hirth [2013 and 2015]. In fact, merit order effect lowers average power prices and 
average market revenue that renewables producers should have received. The gap between them 
refers to market value loss or integration cost of renewables. The gap exists because when 
intermittent penetration rate increases, the drop in the volume weighted average revenues of 
intermittent renewables outweighs the drop in yearly-weighted average prices that they create. 
Figure 2 depicts this effect.  
 
 
Figure 2. Difference between RES market value and average electricity price 

 
Source: Own illustration 
 
Intuitively, this is because during the periods when high demand of electricity coincides with low 
output from intermittent generation, the system has to resort to high cost fuel-fired plants. Prices 
during these periods would be high because such plants have high marginal costs, and/or scarcity 
would push the prices even higher. Intermittent generators, however, would not benefit from these 
high prices since they occur when their output is low. In contrast, when high demand coincides with 
high renewable output (this is particularly true for solar), merit order effect will drive the prices 
downs during these periods, lowering marginal revenue for renewables (market value of 
renewables)6. In an electricity system where intermittent generation comprises a small share of total 
output, the high variability of renewable will have little impact on the average base prices and 
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revenue received by these plants will be very high because prices will be high during these periods. The volume 
wighted average revenue paid to peak-load plants shoud thus be equal to yearly average market price.  This is 
not the case of intermittent renewables.   
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market value of renewables, the gap between them is low. However, if the share of intermittent 
generation is significant, this gap might be significant, as illustrated in Figure 2. Measuring merit 
order effect in this context is of high importance. In the next section, we attempt to evaluate the 
magnitude of this effect.          
 
 

3. LITERATURE REVIEW ON QUANTITATIVE ANALYSIS OF THE MERIT ORDER EFFECT 

The merit order effect has been recently discussed in a number of articles about renewable energy. 
Two broad methods to estimate the merit order effect of renewables have been used in literature: 
electricity market modelling and econometric analysis of historical time series data. Using electricity 
modelling requires precise calibration of costs and especially definition of reasonable scenarios. A lot 
of assumptions bound to the models can negate the certitude of conclusions. Regression models, on 
the other hand, employ historical data and do not require assumptions about alternative 
developments. However, only short-term relations between renewables and spot prices are 
considered. Besides, other factors such as costs and network congestion are often neglected.  
 
Sensfuss et al. [2008] carry out a calibrated PowerACE model7 to run simulations of German 
electricity market with and without fed-in wind generation in order to estimate the merit order 
effect of wind power from 2001-2006. They find that in the year 2006 the reduction in the average 
market price reaches 7.83 €/MWh. The results also suggest that the total volume of merit order 
effect grows from 1 billion Euro in 2001 to about 5 billion Euros in 2006.  
 
Weigt [2009] analyzes the potential of wind energy to substitute fossil fuels and the cost saving that 
this effect would bring about. Using data from German electricity system from 2006 to the first half 
of 2008, he employs an optimization model with the objective function of minimizing costs, subject 
to demand level and capacity constraints of different power plants. The results show that wind 
generation creates a reduction effect on both prices and generation costs and that during the 
examined period, the total saving reaches 4.1 billion euros. 
 
Regarding econometric analysis, Gelabert et al. [2011] employ an OLS regression of daily average 
prices on renewable generation outputs for 2005-2009 in Spain. They find that the spot electricity 
prices decrease by almost 2 €/MWh per additional 1GW renewables fed into the system and that the 
effect is greater for hours with high demand. Earlier papers on Spanish electricity markets found also 
the reduction effect: Sáenz de Miera, del Río González and Vizcaíno [2008], for instant, estimate a 
market price reduction of 11.7%, 8.6% and 25.1% in 2005, 2006 and 2007 respectively. Using the 
similar regression model to Gelabert et al. [2011], on German-Austrian joint dataset from July 2010 
to 30 June 2012, Wurzburg et al. [2013] find an overall reduction of 7.6 €/MWh in the electricity spot 
price induced from fed-in renewable. Cludius et al. [2014] analyze the merit order effects of wind and 
photovoltaic electricity generation for 2008-2012 in Germany by OLS regression models using daily 
average prices. They specify that on average, day-ahead prices of electricity decrease by 0.8 to 2.3 
€/MWh per marginal GWh of renewables fed into the system. The total merit order effects of wind 
and photovoltaic increases from 5 €/MWh in 2010 to more than 11 €/MWh in 2012. They extend the 
analysis out to 2016 forecast and suggest that total merit order effects are likely to lie between 14 
and 16 €/MWh, depending on the assumptions about capacity extensions of wind and PV as well as 
load development. Using OLS regressions with daily prices over the period 2005 –- 2013 in Italian 
power market, Stefano, Alessandra and Pietro [2015] find that an increase of 1 GWh in the hourly 
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average of daily production from solar and wind sources has, on average, reduced wholesale 
electricity prices by respectively 2.3€/MWh and 4.2€/MWh. 
 
Jónsson, Pinson and Madsen [2010] take a slightly different approach. Using forecasted data of wind 
generation and spot prices (day-ahead) for 2006-2007 in West Denmark, they carry out a non-
parametric regression model to estimate how the spot prices in West Denmark are affected by wind 
power forecasts. They also find a significant price effect when the wind power penetration exceeds 
11% of the total power demand. 
 
More recently, Ketterer [2014] and Benhmad and Percebois [2013] analyze the impact of wind 
generation on the spot market prices in Germany. Using GARCH model on average daily data, they 
find that on average the fed-in wind power has negative impact on the price level and positive effect 
on the price variance. Studies are also employed for the wholesale electricity markets in Texas (Woo, 
Horowitz, Moore and Pacheco [2011]) and Australia (Forrest and MacGill [2013]); both papers use an 
AR(1) process. 
 
Though each paper takes different approaches and uses different methods, they essentially come up 
with similar conclusions. The general suggestion in all of those papers is that there is a decrease of 
electricity spot prices as wind power penetration increases. However, none of those using 
econometric models takes into account the distinguished feature of the data in electricity market. 
Electricity is the unique market where there exist 24 different prices for 24 hours per day due to the 
combination of strong variability of demand for electricity and non-storability of electricity. Any 
attempt to model electricity price should take this into account. 
 
There have been three broad modeling strategies of electricity spot prices in the existing literature, 
of which the most common method is to model one daily average price series. Other methods that 
have been employed, though not necessarily concern merit order effect analysis, are the treatment 
of the hourly prices as a single time series, for example, Nogales, Contreras and Conejo [2002], 
Conejo, Contreras, Espinola and Plazas [2005], Liu and Shi [2013], Steen [2003]; or a treatment of the 
hourly prices separately, for example, Crespo Cuaresma, Hlouskova, Kossmeier and Obersteiner 
[2004], Weron and Misiorek [2008], Karakatsani and Bunn [2008], Bordignon, Bunn, Lisi and Nan 
[2012]. 
 
Averaging hourly observations to obtain one average daily price is the least complicated way to treat 
the dataset and this also introduces smoothness into the data by dampening the fluctuations in the 
hourly data. However, manipulation the data in this way might remove the possible short run 
dynamic across hours. Indeed, the magnitude of price reduction effect created by wind power is 
different during the day depending on which power plants are mobilized in the merit order. For this 
reason we are not considering this method.  
 
The treatment of the hourly prices as a single pooled time series is not being considered in this paper 
either. In fact, we are modelling the day-ahead market, where equilibrium prices are determined one 
day before the delivery through an auction mechanism. In the morning of each day, buyers and 
sellers submit their bids (price and quantity combination) for each hour of the forthcoming day. The 
market is closed at 12:00 noon in Germany. Epex Spot then aggregates demand and supply curves. 
The results of equilibrium price and volume for each hour of the forthcoming day are published by 
Epex Spot from 12:40 pm for simultaneous 24 hours (figure 3). Thus, the information of price for 24 
hours is released at the same time. This is why considering the hourly prices as a continuous single 
pooled time series is not an appropriate methodology. 
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Figure 3. Time framework of market information release 

 
 
Modelling a multivariate model is appealing because this allows capturing precise coefficients for 
separate hours. However, the burden on calculation might be too heavy due to the enormous 
number of parameters to estimate. 
 
An assumption under which the issue of having too many parameters can be solved is 
contemporaneous correlation between the error terms. This assumption says that the error terms in 
different equations (hours), at the same point of time, are correlated. The economic intuition behind 
this is quite straightforward. These errors contain the influence on demand and supply that have 
been omitted from the model, such as changes in market regulation, the general state of the 
economy, etc. Since the individual hourly prices share common dynamic in many respects, it is likely 
that the effects of the omitted factors on hour, say h8, will be similar to their effect on hour h9. If so, 
then the error terms in these two hourly equations will be capturing similar effects and will be 
correlated. This motivates us to implement a panel data model, as done in Huisman, Huurman and 
Mahieu [2007] or more recently Meritet and Pham [2015]. 
 
 

4. DATA AND MODELLING PROCEDURES 
 

4.1. Data 

The data concerns the period from 26/10/2009 to 31/12/2012, largely because of the availability of 
data on solar power generation. Hourly data of electricity spot prices (in €/MWh) in German 
wholesale electricity market is collected from the European Exchange market. The data of wind and 
solar power generation in quarter-hour is collected from different TSOs (Tennet TSO, 50 Hertz, 
Amprion, EnBW) and via EEX for validation. We take the average of four quarter-hours to get the 
hourly data.  
 
One great advantage of modeling panel data over daily average series is that panel data takes into 
account the variation of solar power generation across the hours. Unlike wind, solar output is zero 
during the night from 09pm to 5am while being very high around mid-day. Using panel framework 
allows capturing this factor.  
 
The 24 hourly power consumed by the network (including the network losses but excluding the 
consumption for pumped storage and excluding the consumption of generating auxiliaries) is 
published by ENTSO-E. We use the data of total load as the main determinant of equilibrium prices. 
Indeed, total load gives information on which technology should be mobilized in the merit order, 
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thus contributing to determine the marginal plant as well as marginal cost8. To avoid endogeneity 
problem, we use lag-1 values of load.  
 
Table 1. Summary statistics for sample variables 

 
The whole sample spans from 26 October 2009 to 31 December 2012, yielding $T=1163$ for each 
hour and $27912$ observations for the whole panel dataset. 
 
Table 1 gives summary statistics for sample variables. Several unit root tests (Augmented Dickey-
Fuller, Phillips Perron) are applied to each variable, all series are found stationary at the usual 
significance levels (the results are available upon request). The information of Skewness, Kurtosis as 
well as Jarque-Bera on price data shows that its distribution is far from normal: the skewness is 
substantial at -1.99 and the kurtosis is much greater than 3 (at 32.6). The statistical information on 
each series of price also suggests that the normal distributions are rejected: the skewnesses are 
highly negative and the kurtosises are far from 3, particularly from 00am to 09am where the kurtosis 
is at over 50.  
 

4.2. The model and estimation procedures 

We employ generalized autoregressive conditional heteroscedasticity models GARCH to estimate the 
effects created by wind generation on electricity spot market. The argument to justify this choice of 
model are: (1) Electricity spot prices display a "leptokurtosis" feature; that is, they have distributions 
that exhibit fat tails and excess peakedness at the mean (table 1); (2) There is also "volatility 
clustering" attribute - the tendency for volatility to appear in bunches: the current level of volatility 
tends to be positively correlated with its level during the immediate preceding periods. For those 
reasons, we use GARCH model, which are also popular to modelling and forecasting volatility of spot 
prices (Liu and Shi [2013], Garcia, Contreras, Van Akkeren and Garcia [2005], Tan, Zhang, Wang and 
Xu [2010]).  
 
With 24 series dataset, an appropriate model would be multivariate GARCH, which has been 
developed in the literature to model the time dependent variance-covariance; for example, the VECH 
and the diagonal VECH model of Bollerslev, Engle, and Wooldridge [1988]; the BEKK model of Engle 
and Kroner [1995] and the constant correlation (CCORR) model of Bollerslev [1990]. However, one 
problem of these models is that as the number of series employed in the models increases, the 
estimation of these can quickly become infeasible. For example, a 24-price set yields 180300 
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 Others variables that should have been taken into account in price function are fuel costs such as coal or gas 

prices. However, none of these is included in the model. First, the share of gas generation technology accounts 
for a small part in the total annual marginality duration in Germany. A simple OLS regression of German 
electricity spot prices on gas prices shows a non-significant effect. Second, though hard coal and lignite plants 
tend to have a major marginality, the unavailability of the coal price on daily basis and the fact that weekly coal 
prices are rather stable during the examined period except in 2012, we are not considering this variable. 
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parameters to estimate under VECH (1,1) and 900 parameters under diagonal VECH (1,1) model. This 
is practically daunting. 
 
Cermeno and Grier [2001 and 2006] and extended traditional GARCH models, as applied recently in 
Lee [2010], to a panel context. By assuming a common dynamics between hours, this model allows to 
capture the average effect of renewable on the spot price across hours and to reduce significantly 
the number of parameters to be estimated. Besides, this model specifies also equations for how the 
covariances move over time. 
 
For a cross-section of N=24 hours and T time periods, the conditional mean equation for price 

(𝑃𝑖𝑡 )can be expressed as a dynamic panel with fixed effects9: 

𝑃𝑖𝑡 = 𝜇𝑖 + ∑ ∅𝑙
𝐿
𝑙=1 𝑃𝑖,𝑡−𝑙 + 𝛽𝑋𝑖𝑡 + 𝛽𝑤𝑖𝑛𝑑𝑊𝑖𝑛𝑑𝑖𝑡 + 𝛽𝑠𝑜𝑙𝑎𝑟𝑆𝑜𝑙𝑎𝑟𝑖𝑡 + 𝜖𝑖𝑡                  (1) 

 𝑖 = 1, … , 𝑁 ; 𝑡 = 1, … , 𝑇 

The model is defined by the first equation (1) - mean equation- with 𝜇𝑖  captures possible hours-
specific effect; 𝛽 are constant parameters associated with 𝑋𝑖𝑡 - exogenous variables in the system. To 
control the bank holidays effects, we include a dummy variable which takes value of 1 on weekend 

and on Public holidays in Germany and 0 otherwise. The autoregressive terms 𝑃𝑖,𝑡−𝑙  with associated 

parameters ∅𝑙 (l=1…L) are included in the mean function. 𝛽𝑤𝑖𝑛𝑑 and 𝛽𝑠𝑜𝑙𝑎𝑟 are the parameters 
measuring the price effects created by the wind and solar power generation. 
 
The disturbance term 𝜖𝑖𝑡 had zero mean and normal distribution with the following conditional 
moments:  

 
Assumption (2) assumes no non-contemporaneous cross-sectional correlation while assumption (3) 
assumes no autocorrelation. Assumptions (4) and (5) define a very general conditional variance-
covariance process. The conditional variance and covariance are assumed to follow a GARCH (1,1) 
process:  
 

 
 
   Modeling the conditional variance and covariance processes in this way is quite convenient in a 
panel data context since by imposing a common dynamics to each of them, the number of 
parameters is considerably reduced as compared with VECH or CCORR models. In this case there are 
N(N + 1)

2
+ 5 = 305 parameters in the variance-covariance matrix to be estimated. Renewable output 

variables are also included in the variance equation (6) to estimate whether wind generation fed into 
the electricity system increases the volatility of electricity spot prices. 

                                                           
9
 We justify this choice by Hausman specification test (1978), which assume random effects (RE) estimator to 

be fully efficient under null hypothesis. The results of the Hausman test give the overall statistics, chi squared 
(9) having p-value=0.000. This leads to strong rejection of the null hypothesis that RE provides consistent 
estimates. We are considering therefore the fixed effects model. 
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In matrix notation, equation (1) can be expressed as:  
 

𝑃𝑡 = 𝜇 + 𝑍𝑡𝜃 + 𝜖𝑡                      𝑡 = 1 … 𝑇                                                (8) 
 
where 𝑍𝑡 = [𝑃𝑡−1 ⋮ 𝑋𝑡] is a 𝑁 × (𝐾 + 1) matrix with their corresponding coefficients in 𝜃 = [∅ ⋮ 𝛽′]. 
The N-dimentional vector 𝜖𝑡 has a zero-mean multivariate normal distribution and variance-
covariance matrix 𝛀𝑡 denoted as 𝜖𝑡|𝐼𝑡−1~ 𝑁(0, 𝛀𝑡) where 𝐼𝑡−1 represents the information available 
at time t-1, so that the latest information is taken into account. The log-likelihood function of the 
fixed-effects panel model with the time-varying conditional covariance can be expressed as: 
 

 
 
The estimation of this model is conducted by direct maximization of the log-likelihood function given 
by (9). To make sure that GARCH-type model is appropriate for the data, we employ the Engle (1982) 
test for ARCH effects on equation (1). Both the F-version and the LM-statistic are very significant, 
suggesting the presence of heteroscedasticity or ARCH effect in spot market prices. The choice of 
optimal lag number L for the autoregressive terms in the mean equation is justified based on the 
minimization information criteria (Hannan-Quinn). The results show that the best lag number is l=7 
which correspond to weekly frequency of 7 days. To make sure that there is no autocorrelation, we 
employ the unit root test for the residual 𝜖𝑖𝑡 of the mean equation (1). The results from both 
correlogram and unit root test suggest the absence of autocorrelation. 
 
 
 

5. RESULTS AND DISCUSSIONS 
 

5.1. Estimation results 

The estimation results of GARCH(1,1) model for panel dataset are reported in table (2).  
 
Table 2. Estimation results for the GARCH dynamic panel data model 
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The coefficients of both wind and solar are highly significant and negative as expected. The model-
based result suggest that on average, day-ahead prices of electricity decrease by 0.93 and 0.45 
€/MWh per marginal GWh of wind and solar respectively fed into the system. 
 
The coefficients of autoregressive part are generally significant, particularly AR(1) and AR(7) because 
the prices at the day t depends on the prices of the day before (t-1) and those of the same day the 
week before. 
 
The results also suggest that the integration of renewable power generation induces an increased 
volatility of electricity spot prices in German market. This is shown by the coefficients of wind and 
solar outputs in the variance equation which are statistically significant and positive.  
 

The coefficients ARCH associated with 𝜎𝑖,𝑡−1
2  and 𝜎𝑖𝑗,𝑡−1  in the variance-covariance equations are 

highly significant and positive, which justify the model we have chosen, though GARCH effects, 𝜖𝑖,𝑡−1
2  

and 𝜖𝑖,𝑡−1𝜖𝑗,𝑡−1, are statistically insignificant.  

The volatility of prices across hours is given in figures 3 and 4 in the appendix which represent how 
conditional variance changes over time for each hour. Day ahead prices experience more "shocks" 
during the night and early morning (from 00am to 9am) than the rest of the day. Conditional 
variances are also higher in the 26/27 December for each hours. These observations correspond with 
the large changes in price level due to negative prices (which occur mostly during the night) and due 
to the holiday effects.  
 
Other interesting observations show up in the cross-sectional correlation matrix of the error term as 
specified in (7). The conditional covariance constant coefficients 𝛗 𝑖𝑗(276) are highly significant, 

which shows evidence for a clear cross-sectional correlation structure in hourly electricity prices. 
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As explained above and justified in many papers, for example Jónsson et al. [2010], Jonsson et al. 
(2012), Nicolosi and Fursch [2009], and Ketterer [2014], the combination of renewable generation 
and the total electricity load plays an important role in price behavior. For this reason, we use also 
the ratio between wind/solar and total load to estimate how the share of wind in the load portfolio 
effect the prices as done in Ketterer (2012). Indeed, the same level of wind and solar power will 
result different impacts on the price depending on the level of electricity demand. The results are 
shown in table (3)10. The coefficient of fed-in wind and solar share in the total load portfolio is highly 
significant. On average, an increase by 1% of the share of wind and solar power generation in the 
total load would lead to a decrease of spot price by 1.5% and 0.69% respectively.  
 
Table 3. Estimation results for the GARCH dynamic panel data model 

 
We implement four sub-panel datasets corresponding to four demand profiles: the morning peak 
(from 7am to 11am); the afternoon trough (from 12am to 5pm); the evening peak (from 6pm to 
11pm) and the night trough (from 00am to 6am), whose the details are reported in the tables (5) and 
(6) in the Appendix. The results suggest that the impact of wind power on price level is more 
significant in the morning from 7am to 11am. This could be explained by the fact that during the 
peak demand period, the marginal cost curve is steeper, thus the merit order effect would be more 
significant. The impact of wind power generation is particularly high during the night with very low 
level of demand (from 00am to 6am) due to the "shocks" created by negative prices. 
 

5.2. Discussions 

Our results are correspondent with findings from literature especially for wind effect. Figure 4 plots 
some results recorded in various studies in Germany on each year between 2004 and 2014 for both 
wind and solar effects. 

                                                           
10

 We use logarithm of spot prices in this regression to ease the interpretation of coefficients. 
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Figure 4. Merit order effects of renewables in Germany by year11 

  

a. Merit order effects of wind output  b. Merit order effects of solar output 

Regarding merit order effects of wind output (Figure 4a), in general, there has been only slight 
variation among papers which employed the data on the same year. The level of average price 
reduction created by wind power generation increased substantially from 2004 to 2008, ranging 
between 2.5 €/MWh in 2004 up to 10.8 €/MWh in 2008. This could be explained by very expensive 
fuel prices and high CO2 prices (especially in 2007-2008) that make the marginal cost curve of 
electricity generation become steeper during these years. The effect of switching merit order would 
be consequently higher.  This effect remained relatively high in 2009 despite lower demand. Indeed, 
average day ahead prices in 2009 were at particularly low level (38.86 €/MWh) as compared with the 
rest of period mainly because of low demand. However, the merit order effect remained 
comparatively high largely due to very high frequency of negative prices phenomenon observed in 
2009, which were results of combination between high wind fed-in and low demand.  

Merit order effect of wind power was smaller between 2010 and 2012 as the slope of marginal cost 
curve was less steep as result of cheap coal and sharp fall in CO2 prices (since mid-2011). A slight 
increase of merit order effect was however observed from 2010 to 2013 due to the shutdown of 8 
nuclear power reactors in March 2011, which was substituted largely by massive integration of wind 
output (from 4.3 GW in 2010 to 6 GW in 2013). At the end of 2014, price reduction created by wind 
power generation lied from 4.1 to 6.3 €/MWh. The merit order effect induced by solar output was in 
general less significant than that of wind (Figure 4b). This effect has significantly increased between 
2010 and 2012, rising from around 0.8 €/MWh on average in 2010 to around 3 €/MWh after 2 years. 
There is a larger variation between our findings and the ones form literrature (Cludius et al. [2014]) 
because we treat the data as panel framework while Cludius et al. [2014] used daily average data. 
The outcomes from these two ways of treatment are particularly obvious when we incorporate solar 
data, which take significant values around mid-day and almost zero the rest of the time. Averaging 
hourly data to get daily values tends to overestimate the average effect.    

It is important to note that the renewables' coefficients associated with the regression describe the 
effect of marginal wind/solar increase of 1GWh on spot prices, not to estimate what happens when 
wind/solar generation replaces another technology. Based on the results obtained from the 
regression, the total average effect and the annual financial volume of the merit-order effect can be 
estimated as in Sensfuss et al., [2008] and Cludius et al. [2014] by:  

                                                           
11

 The results in some papers are converted into homogeneous units (average price reduction €/MWh) so that 
common patterns and trends can be identified. 
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𝑣 = ∑ 𝑀𝑂𝐸 ∗ 𝑙𝑜𝑎𝑑𝑖

𝑖

 

𝑀𝑂𝐸 = 𝛽𝑒𝑛𝑟 ∗ 𝐸𝑁𝑅̅̅ ̅̅ ̅̅  

where 𝑣 refers to the annual financial volume of the merit-order effect created by wind/solar power 
generation in the wholesale market (in €); MOR – average merit order effect price (measured in 
€/MWh) equals to marginal effects (𝛽𝑒𝑛𝑟) multiplied by the volume weighted average 
wind/photovoltaic generation.  

The results are given in table (4) for each year. The merit order effect created by solar, though less 
significant than that of wind, has increased substantially from 2010 to 2012. The total annual 
financial volume is estimated at 1.86 to 3.91 billion euros, a non-negligible amount. In term of 
surplus for consumers, assuming that local demand curve is linear with a downward slope, this price 
reduction would imply an equivalent increase in consumers’ surplus of  1.26 to 3.16 billion euros 
between 2010 and 2012 in Germany. This increase in consumers’ surplus does not necessarily an 
increase of total welfare. German electricity producers are receiving lower profits and final 
consumers are paying more surcharges. 
 
Table 4. Total annual financial volume of merit order effect 
 

 2010 2011 2012 

Wind_Average merit order effect (€/MWh) -3.25 -4.61 -6.01 

Solar_Average merit order effect (€/MWh) -0.56 -1.03 -2.33 

Annual financial volume  (€billion) 1.86 2.73 3.91 

Increase in consumers surplus  (€billion) 1.26 2.07 3.16 

Total EEG-Umlage cost  (€billion) 2.9 4.82 4.91 

                 (Costs for household consumers) 

 
The substantial annual financial volumes estimated in table (4) benefit mainly the privileged group of 
consumers - who are energy intensive companies in the wholesale market. These companies do not 
bear the surcharge of feed-in-tariff payments: they pay very little amount of the EEG-Umlage: 0.05 
ct/kWh which considerably (100 times) lower than that of households. Therefore, the consumers 
that buy electricity on the wholesale market are not only privileged under the EEG-Umlage but also 
enjoy lower prices created from merit order effect of renewables. On the other hand, many 
households have been paying significant surcharges whilst not necessarily benefiting from lower 
wholesale price. This latter is not fully passed through in the final electricity bill.   
 
In order to distinguish the effect of wind and solar power generation on different types of consumers 
(household and industry) in monetary terms, we compare the total consumers’ surplus (that benefits 
mainly industrial groups) stemming from the merit order effects of renewable production with the 
cost of EEG-Umlage charged on households' electricity bills. The latter is calculated by multiplying the 
EEG-Umlage for households (€/MWh) by the household consumption (MWh) in a given year12. We 
find that the total costs for household consumers to finance investments in renewable energy 
production have been substantial. And even if the reductions in the wholesale prices caused by the 
merit order effect could be adequately passed through to non-privileged electricity consumers, the 
total surcharges would still outweigh the possible savings (in the financial terms). 

                                                           
12

 The EEG-Umlage for households was at 20.47; 35.3 and 35.9 \euro /MWh for 2010, 2011 and 2012 
respectively and the household consumption of electricity was at 141.7;c 136.6 and 137 TWh for 2010, 2011 
and 2012 respectively (Data from Netztransparenz and Eurostat). 
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Our findings suggest that the burden borne on final consumers could be reduced if the surcharges 
paid by privileged consumers in the wholesale market took into account the merit order effect of 
renewables. This could alleviate some of the extra costs caused by the EEG surcharges, thus reducing 
the wealth transfers from residential and small business consumers to large energy-intensive 
industry.  
 
 
 

6. CONCLUSION 

This paper quantifies the impact of the supported wind and photovoltaic electricity generation on 
spot prices in Germany during period from October 2009 to December 2012, using GARCH model for 
a panel data framework. 
 
The model-based results suggest that wind and solar power generation fed in to the system during 
the examined period decreased the level and increased the volatility of the spot prices. The merit 
order effect created by renewable electricity ranges from 3.86 to 8.34 €/MWh which implies to the 
increase of consumers’ surplus of 1.26 ~ 3.16 billion euros. This effect varies across hours during the 
day depending on the demand level. These findings are of interest in the context of the German 
Renewable Energy Sources Act (EEG) which levies a surcharge on final consumers for the support of 
renewable energy sources. Different welfare transfer occurred. Firstly, there have been likely wealth 
transfers from non-privileged consumers (residential and small business consumers), who are paying 
high surcharges and not benefiting from merit order effects, to privileged consumers (large energy 
intensive industry), who are benefiting from merit order effects but being exempted from EEG 
surcharges. Our results suggest that the supporting costs borne on final consumers could be reduced 
significantly if the surcharge paid by privileged consumers in the wholesale market took into account 
the merit order effect of renewables; or if the relations between electricity spot and forward prices 
were adequately close. Secondly, a part of consumers’ surplus was transferred from the profits of 
electricity producers. In the long term perspective, when renewables penetration rate is sustainably 
higher, this effect could imply significant integration costs because the gap between average power 
prices and average market value renewables becomes larger. The need for renewables supporting 
scheme could probably be permanent (cannibalization effect). However, the methodology used in 
this paper does not permit to extend the analysis to long term perspective where the level of 
intermittent generation will increase and conventional generation should be adapted. As an 
interesting topic for further research, the volume of the merit-order effect created by wind power in 
the future under different scenario of development would also be worth estimating.    
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Appendix 
Table 5. Estimation results for GARCH model-morning and afternoon 
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Table 6. Estimation results for GARCH model- evening and night 
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Figure 5. Conditional variance 
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