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Abstract

Regional network connection schemes for renewable energy sources (RES) have been set in
France in order to avoid “large” (i.e. > 100 kW) RES producers to pay deep-cost connection
charges, that were seen as a brake on the development of renewable energy, and to give a
locational price signal to RES projects developers. Using a unique database of connection
applications by wind producers to the main French DSO’s (Enedis) network, we develop a
spatial panel model that captures the effect of this innovative regulation as well as spatial
dependences of the variables. Thus, we show that the schemes have managed to redirect
connection requests towards less constrained regions without altering the global level of
connections, and that spatial substitution occurred between regions. On average, an increase
of the network charge ofe/kW in a region reduces quarterly connection requests by 300 kW
in the region while increasing them by 138 kW in the neighbouring ones. Finally, we show
that the diffusion of wind energy exhibits an “epidemic” effect, i.e. there is a positive impact
of the number of past installations on the number of connection requests.

Keywords: Wind energy; network regulation; connection charges; diffusion; spatial
panel models.
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I. INTRODUCTION

Following the third European energy package, the 2020 “20-20-20” objectives1 were
transposed into French law in August 2009, setting i.a. a target of 23% of renewable
energy sources (RES) in the final energy consumption in 20202. This lawwas completed
in July 2010 and an obligation was made for each region to work out a scheme for
climate, air and energy (SRCAE3), setting regional targets for RES for 20204. Alongwith
these schemes, the transmission and distribution system operators (the TSO - RTE, and
DSOs such as Enedis, the DSO for 95% of the population) also had to design a network
connection scheme for renewable energy sources for each region. These are named
S3REnR or SRRRER5.

The idea behind this planning tool is to make RES producers share network reinforce-
ment charges, instead of applying the so-called “deep cost” methodology which oth-
erwise prevails in France for electricity production units. This approach charges all
network reinforcement costs to the first producer that triggers the reinforcement in
question. The resulting uncertainty was considered a barrier to investments in renew-
able energy projects, which are usually decentralised. They are therefore relatively
small compared to centralised units, for which such additional charges weigh less in
the total installation cost. On the contrary, RES developers may not afford important
network reinforcement charges, so it was decided that they would instead share these
costs. Each plant with capacity higher than 100 kWwould thus be charged proportion-
ally to its capacity. Note that renewable producers with capacity lower than 100 kW
do not pay reinforcement charges at all, and it was even decided that the smallest ones
would have their connection subsidised up to 40%. Moreover, regionally differentiated
network connection charges were expected to give a locational price signal to RES pro-
ducers, and hence lead to a more efficient use of the existing network. Higher charges
actually meanmore network constraints, which should make additional renewable en-
ergy production less desirable.

Following the publication of the SRCAE schemes, S3REnRs have been designed by RTE
and theDSOs, based on the 2020 targets. In order tomeet these targets, they identified a
potential RES capacity per electrical substation and computed the associated reinforce-
ment costs. Furthermore, each substation has some capacity (which can be zero) re-
served for RES projects, that can be publicly monitored on a dedicated website6. When
all reserved capacities have been allocated, the scheme is said to be saturated, and an-
other scheme is to be designed and published, with new reserved capacities and asso-

1Reduction of 20% of greenhouse gas emissionswith respect to 1990, 20% of renewable energy in final
energy consumption, and a 20% increase in energy efficiency.

2LOI no 2009-967 du 3 août 2009 de programmation relative à la mise en œuvre du Grenelle de l’environnement
[20]

3In French: Schémas Régionaux Climat, Air, Énergie, i.e. literally: regional schemes for climate, air
and energy.

4LOI no 2010-788 du 12 juillet 2010 portant engagement national pour l’environnement [21]
5In French: Schémas Régionaux deRaccordement auRéseau des Énergies Renouvelables, i.e. literally:

regional network connection schemes for renewable energy sources.
6https://capareseau.fr/
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ciated network charges. However, nothing is planned in case the target is not met. This
issue, among others, has led to some criticisms towards S3REnRs7. Thus, the goal of
this paper is to assess its efficacy, i.e. whether it provides efficient locational price sig-
nals and enhances the development of renewable energy (through the reduction of the
uncertainty about network connection charges). Our analysis reveals that this is indeed
the case for wind energy, which we have chosen as it is the second RES technology in
France (after hydroelectricity). It is also the leading technology being developed, along
with solar photovoltaics (PV). The latter is however more difficult to analyse, because
of multiple support schemes depending in particular on capacity thresholds and types
of installation.

In order to do so, we develop a spatial panel model, whose dependent variable is the
number of connection requests of wind farms of more than 100 kW. The model takes
into account the spatial autocorrelation of both the dependent and independent vari-
ables such as the network connection charge. Since we are dealing with regionally
differentiated schemes, we expect RES developers to choose a production site not only
based on its production potential (i.e. wind speeds), but also on the value of the network
charge. Hence, if a site with a strong potential is located on two or more neighbouring
regions, installation is more likely to occur in the “cheapest” one. In other words, we
can think of neighbouring regions as substitutes for one another. This is confirmed by
our results, as they reveal the existence of negative and significant spatial autocorrela-
tion. This contrasts with previous spatial analyses of RES, that have mainly focused on
solar PV, but on a much smaller scale (municipalities or even streets in a city). In these
studies, a positive spatial autocorrelation (i.e. a positive influence from the vicinity)
was found, which was interpreted as peer effects (see for example [11] for an applica-
tion to German counties and a review of the literature on PV). Using a unique data set
of connection requests provided by Enedis, which we aggregate into 1154 observations
of 21 regions over 74 quarters, we show that on average, an increase of the network
charge of 1 e/kW in a region reduces quarterly connection requests by 300 kW in the
concerned region while increasing them by 138 kW in the neighbouring ones.

Furthermore, the development of wind energy, like other RES, is expected to exhibit an
intrinsic diffusion process, as originally described by Bass [5] for durable goods. Thus,
we take into account this characteristic, adding an “epidemic” term to the equation.
We show that past installations have had a positive and significant impact on the dif-
fusion of wind energy, which is in line with most of the literature on renewable energy.
However, we do not observe a “stock” effect yet, which shows that the growth is still
on the increase.

Finally, we take into account residual autocorrelation, which is on the contrary found to
be positive. This highlights the existence of spatially correlated unobservable variables.
These could be wind speeds, as they are positively correlated and undoubtedly have
an influence on the choice of location of a wind farm. The remainder of the paper is
then organised as follows: section 2 provides a review of the literature, and section
3 presents the data used in our analysis. The spatial panel model is then detailed in
section 4, followed by the presentation and discussion of the results in section 5. Section

7See for instance the early criticisms of the French Energy Regulator (in French): http://www.cre.
fr/documents/deliberations/avis/energies-renouvelables/consulter-la-deliberation.
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6 concludes the paper.

II. LITERATURE REVIEW

Our article is based on several strands of the literature on RES. The first one is quite
general and deals with network regulation and its impact on RES development and
spatial location; the second is based on the literature on diffusion, which has widely
been applied to RES; the third one studies spatial interactions in RES development.

First of all, few authors have studied the impact of network regulatory rules on the
development and spatial location of distributed RES. In a rather qualitative fashion,
Anaya and Pollitt [1] analyse regulation and trends in Germany, Denmark and Swe-
den, focusing on network access and connection charges as well as support mecha-
nisms. They conclude that early support of RES, as in Germany, is a key driver of
the their adoption. They also compare connection mechanisms and conclude that the
“deep cost” methodology is likely to have a negative impact on the development of
RES compared to a “shallow cost” one (in which no reinforcement charges are paid),
especially in the case of very high connection charges. Previously, Lopes et al. [22] and
Klessmann, Nabe, and Burges [16] had already briefly identified the role of “deep”,
“shallow”, and “shallowish”8 network connection charges. On a slightly different sub-
ject, Brandstätt, Brunekreeft, and Friedrichsen [9] compare the effectiveness of loca-
tional energy pricing, locational network pricing, and “smart contracts” in reducing
network investments in smart distribution grids. We trust that our research will con-
tribute to this literature by presenting the rather unique French S3REnR network con-
nection schemes and providing quantitative impacts of these schemes.

Secondly, in order to isolate the effect of the S3REnR regulation on wind energy devel-
opment, it is essential to control for the diffusion process followed by this somewhat
new technology. Indeed, several studies have modelled the deployment of electric re-
newables as following an “S-curve”, in the line of the seminal work of Griliches [15],
such as Schilling and Esmundo [29] for solar photovoltaics. Others have used diffusion
models à la Bass [5], mostly to assess the impact of subsidies and/or peer (social) effects
on the development of solar photovoltaics (e.g. [8]; [26]). In the case of wind energy,
Liu and Wei [19] found that the development of wind power in China has been driven
by financial incentives as well as by epidemic effects, using a linear regression equation
from a logistic growth function. They follow Benthem, Gillingham, and Sweeney [7],
who had previously addressed the subject of subsidies for solar photovoltaics in Cali-
fornia in the presence of learning-by-doing. More recently, Baudry and Bonnet [6] used
a micro-founded diffusion model to analyse the effectiveness of demand-pull policies
on wind energy development in several European countries.

Ultimately, since we are dealing with geographical data, spatial dependence is also
likely to occur and hence bias the estimators if not taken into account ([12]). Conse-
quently, several authors have highlighted the existence of spatial dependence, either

8Under such charges, only some reinforcement costs are borne by the producer. The French S3REnR
schemes could come under this terminology.
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whenmodelling the diffusion processes of RES or when studying their determinants of
adoption. For instance, Balta-Ozkan, Yildirim, and Connor [4] analyse the deployment
of solar PV in the UK using a cross-section spatial econometrics approach, and find that
there are significant regional spillover effects. Spatial panel models have also be used,
for example by Graziano and Gillingham [14], who show that adoptions of residential
PV in Connecticut (US) have also been driven by neighbouring installations (peer ef-
fects), while Müller and Rode [24] previously presented similar evidence in the city of
Wiesbaden (Germany) using a spatial panel logit model. More recently, Dharshing [11]
performed a spatial panel econometrics study on the dynamics of adoption of residen-
tial solar panels in Germany. In all these studies, spatial spillovers are positive and are
then interpreted as peer effects at the local level. To the best of our knowledge how-
ever, no one has investigated the presence of spatial dependence in the case of wind
power yet. Wind power being usually much more capital intensive than small-scale
PV, there are fewer projects than PV ones. As a consequence, higher spatial aggrega-
tion is required, so that positive spillovers are likely to be “diluted” and hence be absent
at this scale. On the contrary, we will show that spatial autocorrelation is negative as
a result of substitution in the choice of a location, but that there exist positive residual
autocorrelation. Our model thus constitutes a rare example among spatial econometric
models, whilst keeping an intuitive interpretation9.

III. DATA

In order to perform our analysis, we use publicly available dates of enforcement and
shares of connection charges for of all 21 regional schemes, as well as connection re-
quests data provided by Enedis for wind farms with a capacity higher than 36 kW,
from January 1998 to June 2016.

3.1. Network connection charges

On the one hand, we used publicly available data on S3REnRs. The documents relative
to these network connection schemes are published on the RTE’s website10. The corre-
sponding documents contain a lot of information: a description of the regional network
and its evolution, how the scheme was prepared and realised, which reinforcements
have been selected and howmuch they cost, howmuch reserved capacity11 there is per
substation, etc. They are published along with other documents, such as public con-
sultation reports, technical and financial status, transfer12 or saturation13 notifications.

9As noted by Anselin and Bera [2]: “Of the two types of spatial autocorrelation, positive autocorre-
lation is by far the more intuitive. Negative spatial autocorrelation implies a checkerboard pattern of
values and does not always have a meaningful substantive interpretation”.

10https://www.rte-france.com/fr/article/les-schemas-regionaux-de-raccordement-au-
reseau-des-energies-renouvelables-des-outils (in French).

11The schemes are based on a regional target for RES capacity, which is then subdivided in “reserved
capacities” for each substation, that cannot be used for non-RES projects.

12Reserved capacity at a substation can be “transferred” to another substationwithin the same scheme,
provided the global capacity and the network charge remain unchanged. This allows some flexibility in
the scheme, if all substations are not used as originally planned.

13When all reserved capacity has been allocated to RES projects, the scheme is said to be saturated,
and a new scheme is to be designed and published. Until then, the network charge remains unchanged.
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All this information can be very useful to RES project developers in particular. For the
purpose of our study however, we are only interested in the date of enforcement of the
scheme, and the related network charge, ine/kW, and their possible changes (only one
region - Champagne-Ardenne, has been concernedwith a change so far, as a saturation
was anticipated14).

Figure 1 below shows the variation of the network charge per region, and table 1 presents
some descriptive statistics. We have used the first value of the charge in Champagne-
Ardenne, which rose from 49.26 to 53.17e/kW at the end of 2015. From these can
be seen that network charges are rather heterogeneous, although six regions (out of
twenty-one) have a charge almost equal to 10e/kW, and eleven have a charge “con-
centrated” between 9e/kW and 20e/kW only. The aforementioned features appear
clearly on the whole data set (A.1) or the histogram (figure A.1) in appendix 1. Never-
theless, eight values are relatively spread between 20 and 70e/kW.

Figure 1 – Network reinforcement charges per region (e/kW), before revision.

Min Q1 Med. Mean Q3 Max S.D.
0 10.11 18.21 23.72 35.63 69.90 19.40

Table 1 – Descriptive statistics of regional network reinforcement charges (e/kW), be-
fore revision

In addition, these charges can be compared with the other driving costs of a wind
farm project. As an indication, CRE [10] and SER [30] give a cost magnitude of about

So far only two regions - Picardie and Nord-Pas-de-Calais, have their scheme saturated, but no revision
has been published yet.

14See the new scheme ([27]).
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1000e/kW for wind turbines, which represent roughly 75% of total costs. Although
the network reinforcement charges are very small compared to the cost of the turbine,
we need to remember that wind farms have been subsidised thanks to feed-in tariffs,
which have now been replaced by feed-in premiums. These subsidies aim at giving
an “adequate” return on investment to project developers. As a result, they take into
account the capital and operating costs, but not the regional charges, or at least not on
a per-region basis. Consequently, we can still expect these to have an impact on the
location choice of wind farms.

Dates of enforcement are also quite heterogeneous in time, and it took more than three
years to have all schemes came into effect. In order to have enough data per period,
we chose to aggregate it at the quarterly time step. This keeps the heterogeneity of
dates of enforcement, as at most four schemes came into force during the same quarter
(Q4 2012). As they have not particularly been enforced at the beginning or end of a
quarter, we consider that the share of reinforcement costs was still equal to zero during
the quarter of implementation, and we control this simplification by adding a dummy
variable for the quarter in question. This dummy is also a measure of the effectiveness
of the scheme. In particular, we expect it to have a lower coefficient than the post-
enforcement dummy, since it captures the effect of the reform for less than a quarter.

3.2. Network connection requests

On the other hand, we used data provided by Enedis, the distribution system operator
(DSO) for 95% of French customers. More precisely, we have information on the date
at which they entered the “waiting list”, which makes them eligible for the applicable
feed-in tariff and liable for the network charge. We also have details on their location
(city) and capacity.

After a request is addressed to the network operator, it has three months to send back
a technical and financial proposition, which is then valid for three months. When the
proposition is accepted, the project enters the waiting list, for which it stays on average
for 782 days. However, about 35% of projects are abandoned and withdrawn from the
waiting list without being connected, in which case the mean stay in the waiting list is
still of 427 days. If on the contrary the connection is completed, it is of 1010 days, and
the longest connection project took 4409 days (12 years).

Thus, due to the long delay between the connection request and the actual connection
or the abandonment of the project, it is impossible to study the number of requests
that effectively led to a connection without removing a large part of the sample. Even
doing so, we would remove projects that may have led to a connection in the future.
We have thereupon decided to focus on connection requests, which nonetheless give
a good proxy of the future number of wind farms (one could still assume a constant
rate of abandonment). They are also responsible for the lengthening of the waiting
list and hence for the possible saturation of the schemes and the triggering of network
reinforcements.

This data is quite relevant for the analysis of the regional schemes, since up to mid-
2016 (which is when our data set finishes) 89% of wind capacity has been connected
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to Enedis’ network, and 71% of the wind-energy waiting list is on Enedis’ network as
well. It increases mainly on its network too ([28]). This can be explained by the fact that
the capacity limit between the distribution and the transmission networks is equal to
12 MW for production units, with a possible extension up to 17 MW, while the average
size of a wind farm was 15.3 MW in 2016 ([13]). Furthermore, bigger wind farms tend
to ask for several connections to the distribution network rather than one connection
to the transmission network. This can be seen by looking at the number of connection
requests that occur the same day in the same city. Indeed, we have 20.3% of “mul-
tiple connections”, which are mostly “double connections” (16.6%). The comparison
of statistics in table 2 and 3 below also highlights this fact. However, aggregated re-
quest can only be used as a proxy for the study of multiple connections, since some
wind farms are connected to substations in different cities, and sometimes at different
dates. This probably leads to an underestimation of this phenomenon. On the contrary,
there could be several connection requests in the same city at the same date for distinct
projects, but this seems very unlikely. A more rigorous analysis would require a long
and thorough examination of the data set andwould be beyond the scope of this study.

Unfortunately, we do not have connection requests data from RTE, nor from the other
small DS0s (approximately 5% of DSOs’ customers). However, the number of connec-
tions on RTE’s network is rather limited, and the use of regional fixed effects should
control for the presence of some relatively large DSOs in some regions. Moreover, we
have 78 out of 2388 connection requests for which we do not have the location. This
accounts for 3.4% of the data in terms of number of observations as well as connection
capacity.

Single requests 12 10 8 11,5 6 9,2 4 9 6,9 2
N 410 285 143 124 77 72 59 49 47 38

Aggregated requests 12 10 8 11,5 6 4 16 13,8 24 9,2
N 255 171 101 77 61 40 37 34 32 30

Table 2 – Ten most frequent capacities for single and aggregated (city-day) connection
requests (MW)

N Min Q1 Med. Q3 Max Mean St. dev.
Single requests 2308 106 7500 10000 12000 17000 9225 3564

Aggregated requests 1837 106 8000 11000 13800 99750 11590 7561

Table 3 – Descriptive statistics for single and aggregated (city-day) connection requests
(kW)

Since we use connection requests for wind projects of more than 100 kW, i.e. those con-
cerned by the network charge, there could be some “down-sizing” behaviour for wind
projects just above 100 kW to avoid paying the network charge. However, projects un-
der 100 kW represent only 0.002% of total capacities (and 0.75% of the number of con-
nection requests), and are therefore negligible. This is confirmed by the non-truncated
histogramof connection requests capacities in figure 2, which also highlights the 12MW
and 17MW limits15. The histogram also reveals the fact that most wind farms probably

15We have removed two “outliers” at 152.300 MW and 64.580 MW, which correspond to abandoned
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rely on 2MW-turbines, which is also confirmed by table 2, as most frequent connection
requests are multiples of 2 MW.

Figure 2 – Histogram of connection requests capacities (kW)

Figure 3 displays the temporal evolution of quarterly demand forwind projects ofmore
than 100 kWon Enedis’ network. It is clear from this graph that the dynamic is very dif-
ferent from one region to another, as some regions have nowind farm at all (Aquitaine)
or almost none (e.g. Alsace and Provence-Alpes-Côte d’Azur). On the contrary, Pi-
cardie and Champagne-Ardenne (and to a lesser extent Nord-Pas-de-Calais) are the
most advanced regions in terms of installed wind capacity, as can be seen on figure 6
and 5 in the next subsection. This explains why the scheme in Picardie is already satu-
rated and the ones in Champagne-Ardenne andNord-Pas-de-Calais have been revised.

Figure 4 helps visualise the actual heterogeneity between regions, as it displays the
quarterly mean demand for wind farms with a 95% confidence interval. We see that
the confidence interval can be up to twice as large as the mean, which is the sign of a
very strong inter-regional dispersion.

3.3. Installed base

Following the work of Bass [5], we will use the installed base, i.e. the cumulative con-
nected capacity in a given quarter, as an indicator of diffusion. Indeed, the develop-
ment of wind energy is expected to follow an intrinsic diffusion process, which needs
to be controlled for. However, it would not be relevant to compute the installed base
from cumulative demands as is usually the case, for the reasonswe have justmentioned
(delays and abandonment of projects). Furthermore, as pointed out by Narayanan and
Nair [25], the use of the cumulative stock of the dependent variable in a panel regres-
sion gives biased and inconsistent estimators because it introduces a covariate which is
serially correlatedwith the dependent variable. They advocate the use of an instrumen-
tal variable, which can be very difficult to find, or a bias-correction approach, which
requires no error autocorrelation.

Noting this issue, Bollinger and Gillingham [8] show in the case of solar panels that
if the lag between the adoption decision and the installation is sufficiently large (with

wind farm projects. It is not clear why such big projects were in the DSO’s register instead of the TSO’s
one.

10



Figure 3 – Quarterly demand for wind projects of more than 100 kW

Figure 4 – Heterogeneity of connection requests between regions
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respect to the order of autocorrelation of errors), then the estimators are consistent and
unbiased. This is particularly suitable for our study, because of the very long delay
between the request and the actual connection. Figure 5 and 6 below display the evo-
lution of the installed base per region and their geographical distribution at the end of
June 2016. It can be noted that it is highly heterogeneous, which is a direct consequence
of the heterogeneity of connection requests. Also, figure 5 shows that most diffusion
curves do not have the shape of an S yet, so that we can consider the technology to still
be at a fairly early stage. In particular, this excludes the use of the squared installed
base as a diffusion variable, which usually aims at capturing the “stock” effect, i.e. the
saturation of the market.

Figure 5 – Installed based per region

IV. MODELLING STRATEGY

Assessing the impact of the S3REnR charge on wind energy deployment requires to
consider the data set as a panel, despite the strong observed heterogeneity between re-
gions. Indeed, independent regressions could not give us an estimate of this effect. At
best we could get an average value of the impact of the scheme per region, for example
using a difference-in-differences approach. However, this would ignore the intensity
of the reinforcement charge, which can vary widely across regions. Ergo, we develop
a panel data model with region and time fixed effects in order to capture as much het-
erogeneity as possible. The data being geographical, we also take spatial interactions
into account, as explained in the following subsection.

4.1. Spatial interactions

Since we are dealing with geographical data, it is necessary to investigate possible spa-
tial autocorrelation of the variables in order to avoid having biased and inconsistent
estimators. In particular, spatial interaction can be present in the three following forms.

12



Figure 6 – Regional cumulative wind capacities (kW) connected to Enedis’ network,
mid-2016

First of all, it can be endogenous, when the outcome in a region impacts the outcome in
a neighbouring one, for example as a consequence of peer effects or substitution, as de-
scribed in section 1. Spatial interaction may also be exogenous, when it comes from the
covariates, i.e. if a variable change in a region has an effect in the neighbouring ones.
This could be the case for network connection charges. Thirdly, there can be a residual
spatial interaction, when spatially correlated unobservable variables affect the depen-
dent variable. For instance, wind speeds are expected to be a rather influential factor in
the location choice of a wind farm, and they are spatially autocorrelated (positively), as
can be seen from figure 7. In France, winds are strongest on the Channel and Atlantic
coasts, as well as on the Mediterranean coast. Wind corridors such as the Rhône valley
in the southeast also exist.

Although wind is not unobservable strictly speaking, it is difficult to integrate it as
an explanatory variable for several reasons. Firstly, there is no simple relationship be-
tweenwind speeds andwind energy potential. It is in general nonlinear anddependent
on the technology used. Secondly, even if this relationship was known, wind speeds
(and hence potential output) can vary within a single region. In this case, a unique
indicator will not capture the diversity of wind regimes within a same region. For ex-
ample, one could use the maximum, mean or median value, or other statistic, but there
is no obvious choice. Finally, the use of a single-valued (i.e. non-panel) covariate per
region would prevent us from using individual fixed effects, that provide the means to
capture other unobservable variables as well.

13



Figure 7 – Wind speeds in Europe. Source: Troen and Lundtang Petersen [31].

14



4.2. Spatial panel model

In order to take spatial interactions into account, one needs to define a vicinity relation-
ship between theN = 21 regions under study. In spatial econometrics, the relationship
takes the formof aN×N symmetricmatrixW , whose coefficientswij (weights) describe
the vicinity relationship between regions i and j, and are usually distance or contiguity-
based. Distance-based coefficients can be useful for instance in “gravity-like” models
and have the advantage of being parameterised in relatively “simple” spatial models.
In our case, we find it more relevant to use a contiguity-based matrix, as is often the
case in spatial econometrics. In particular, we use a first-order contiguity-basedmatrix,
whose weights wij are equal to 1 if regions i and j are considered as neighbours, and 0
otherwise16. More precisely, we use a rook-style weightmatrix, were regions that share
a common edge are considered as neighbours17, as represented by the graph in figure
8. This choice is frequent in spatial econometrics, and quite natural for our study, since
we are interested in possible substitution between neighbouring regions. Indeed, the
potential location of a wind farm is not likely to extend over non-contiguous regions,
as exploration of potential sites can be relatively costly for wind energy companies.

Figure 8 – Graph of rook neighbours

As a consequence of all possible spatial interactions described in the previous subsec-
tion, we choose tomodel connection requests capacity using the following general nest-
ing spatial (GNS) panel model with space and time fixed effects:{

S = ρ(1T ⊗WN)S +Xβ + (1T ⊗WN)Xθ + (ιT ⊗ ν) + (δ ⊗ ιN) + u

u = λ(1T ⊗WN)u+ ε
(1)

where WN is the N × N row-standardised weight matrix18, ⊗ denotes the Kronecker
(or tensor) product and 1T is the identity matrix of dimension T , so that 1T ⊗WN is an

16wii = 0, i.e. a region is not considered to be its own neighbour.
17A similar possibility, the queen-style weight matrix, considers that regions that share a common

edge or corner are neighbours. In our case, this would lead to the exact same matrix as the rook-style
one.

18The matrix is standardised so that the sum of the terms in each row is equal to 1 (or zero if a region
has no neighbour)
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NT × NT block matrix whose diagonal elements are T WN matrices. The dependent
variable S is represented in stacked form as a NT × 1 vector, as well as the error terms
ε and u. Independent variables X are stacked in a NT × K matrix, where K is the
number of covariates. The parameters to be estimated are hence: ρ and λ, the spatial
autoregressive and spatial error coefficients; β and θ, the coefficients of covariates and
spatially lagged ones, of length K; ν, a vector of individual fixed effects of length N ;
δ, a vector of time fixed effects of length T , and ιN (resp. ιT ) is a vector of length N
(resp. T ) filled with ones. Moreover, it is assumed that the idiosyncratic error vector ε
verifies: E[ε] = 0 and E[εε′] = σ21NT , and is identically and independently distributed.
Additionally, regional and time fixed effects verify ν ′ιn = 0 and δ′ιT = 0. For simplic-
ity, the model can be rewritten in the following “instantaneous” form, omitting the N
subscript for the weight matrix:

St = ρWSt +Xtβ +WXtθ + ν + δtιN + ut

ut = λWut + εt

εt ⇝ IID(0, σ2)

(2)

where St, ut and εt are vectors of length N , and Xt is a N ×K matrix.

So, the GNSmodel contains the three types of spatial interactions described above: en-
dogenous (ρ), exogenous (θ) and residual (λ). However, it has been criticised for often
giving non-significant estimates ([12]), and it is thus rarely used in spatial economet-
rics. Researchers usually use several restrictions of the GNS model, which are similar
to time series models (in their denomination). If covariates are only considered locally
(i.e. when θ = 0), we have a spatial autoregressive combined (SAC), or spatial autore-
gressive errors (SARAR) model. If in addition λ = 0 it is called a spatial autoregressive
(SAR) model, and if on the contrary ρ = 0 it is a spatial error (SEM), or spatial moving
average (SMA) one. A less frequent kind ofmodel is the spatial cross regressive, or spa-
tial lag independent variables (SLX) one where only θ ̸= 0. Finally, a SAR (resp. SEM)
with spatially lagged covariates is called a spatial Durbin (error) model (SD(E)M).

Elhorst [12] recommends using the two latter, but warns that “both models tend to
produce spillover effects that are comparable to each other in terms of magnitude and
significance, and because interaction effects among the dependent variable on the one
hand and interaction effects among the error terms on the other hand are only weakly
identified. Precisely for this reason, the general nesting spatial (GNS) model is not of
much help either. It generally leads to a model that is overparameterized, as a result
of which the significance levels of the variables tend to go down.” (p.33). In our case,
all spatial interactions are justified from an economic and physical (in the case of wind
speeds) point of view. Consequently, we have decided to keep the GNS model, whose
estimates are almost all statistically significant, as we will show in the next section.

Finally, the independent variables in X are: the installed base Y defined earlier, the
regional S3REnR charge T (which is considered to be zero up to the quarter of enforce-
ment ti, included), a dummy variable for when the regional scheme is enforced, and a
dummy variable equal to 1 afterwards. The use to these two dummy variables takes
into account the fact that the enforcement does not usually happen at the beginning
or end of a quarter. Furthermore, the enforcement quarter dummy aims at capturing
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a possible “deadline” effect, i.e. a possible “rush” before the enforcement, in order to
avoid paying the network charge.

V. RESULTS AND INTERPRETATION

5.1. Estimation results and first interpretations

We estimate the model 2 over the whole sample (T = 74 andN = 21) using the R pack-
age splm developed byMillo and Piras [23]. The main estimation results are displayed
in table 4 below, while time and region fixed effects can be found in appendix 2. The
R-squared is R2 = 0.308879, which is an “acceptable” value (although not of much in-
terest) for panel models, and the results are robust when considering time lags of the
installed base a well as a SAC specification.

Estimate Std. Error t-value p-value
ρ -0.4272 0.1090 -3.92 0.0001
λ 0.3277 0.0902 3.63 0.0003
Y 0.0415 0.0051 8.17 0.0000

W × Y -0.0068 0.0093 -0.73 0.4628
T -285.8 92.85 -3.08 0.0021

W × T -363.2 177.6 -2.04 0.0409
1[t > ti] 7,579 4,297 1.76 0.0778

W × 1[t > ti] 10,801 9,283 1.16 0.2446
1[t = ti] 12,904 5,395 2.39 0.0168

W × 1[t = ti] 20,676 11,069 1.87 0.0618

Table 4 – Estimation results of the GNS panel model

Because of the endogenous spatial correlation, we cannot readily interpret the numer-
ical value of all these coefficients (see next subsections). Nonetheless, we can do so
for the spatial autocorrelation parameters ρ and λ. First of all, they are both highly
significant. Secondly, the former is negative, contrarily to what has been observed for
residential solar panels. So, we do not observe peer effects, but rather some substi-
tutability between regions: the more connection requests in a given region, the less
connection requests in the neighbouring ones. In a way, a negative ρ can be inter-
preted as the “marginal rate of substitution” between two neighbouring regions, all
other things held constant. This could have several explanations, the most simple of
which is the existence of arbitrage when the choice of a region is to be made. Indeed, as
the number of “large” wind energy projects is rather limited19, the location choice of a
wind farm in a regionmay come at the expense of a neighbouring but as promising one
(all other things being equal). On the contrary, the residual autocorrelation coefficient
λ is positive. This may reflect the autocorrelation of wind speeds, as described in the
previous section, but other unobservable variables such as population or income may
also be spatially correlated (although not necessarily at such a large scale).

Finally, we see that ρ andλ arewell identified. Thismay bedue to the fact that they have
19In comparison, the number of small-scale PV projects is very large, so that the market could almost

be considered as atomistic.

17



opposite signs, whereas negative spatial autocorrelation seems to be pretty rare else-
where in spatial econometrics, which probably makes the two coefficients less identifi-
able. In particular, results are relatively robust under the other specifications described
above, unless the estimates of ρ and λ when one of them is set to zero. Indeed, in that
case it can be hard to determine whether spatial interaction is endogenous or residual.
Ergo, the estimation of one of the two parameters when the other is zero gives an “av-
erage” value of the two, which in our case is roughly equal to -0.1. In the SAC (SARAR)
specification however, both estimates are very close to the ones of the GNS model.

5.2. Interpreting coefficients: simplified example

Similarly to autoregressive models in time series, the coefficients of spatially autore-
gressive models cannot be interpreted directly20. To see this, let us first consider a sim-
plified SDM model with only two neighbouring regions and one covariate X . For the
sake of simplicity, we do not write the error term, as it plays no role in the computation
of the marginal effects. Thus, we have the two following equations:{

S1t = α1 + βX1t + θX2t + ρS2t

S2t = α2 + βX2t + θX1t + ρS1t

(3)

which can be solved for example either by substituting variables in the two equations,
or computing the inverse of the matrix 1− ρW . Solving the system leads to:

S1t =
α1 + ρα2

1− ρ2
+

β + ρθ

1− ρ2
X1t +

θ + ρβ

1− ρ2
X2t

S2t =
α2 + ρα1

1− ρ2
+

β + ρθ

1− ρ2
X2t +

θ + ρβ

1− ρ2
X1t

(4)

From this simple resolution it is clear that demands in both regions are interrelated,
and that a change in Xi will have both a (direct) impact on Si, with a sign equal to
β + ρθ’s sign, and an (indirect) impact on Sj (i ̸= j), with a sign equal to θ + ρβ’s sign.

When theta = 0, the direct impact is “amplified” by
1

1− ρ2
> 1. This is a result of

“feedback”, i.e. the fact that a region is a neighbour of its neighbours, and is impacted
by even powers of ρW accordingly.

From equation 3, we see that if ρ > 0, an increase of the dependent variable in a region
increases it also in the neighbouring one, i.e. there is a complementarity effect. If on
the contrary ρ < 0, there is a substitution effects. Furthermore, if ρ > 0 and |θ| is
“small enough” compared to |beta| (or if θ and β have the same sign), then the direct
and indirect marginal effects of X have the same sign, so that the regions are indeed
complements with respect to the variable X . Conversely, if ρ < 0 and |θ| is “small
enough” (or if θ has the sign of −β), they have opposite signs, and the regions are
indeed substitutes. In our case for example, a higher S3REnR charge in a given region
is expected to decrease the number of connection requests within this region, but a
higher charge in neighbouring regions is expected to increase it if substitution between
region is possible.

20If there is no spatial autocorrelation, i.e. if ρ = 0, the interpretation of the coefficients is the same as
in an OLS regression. This is the case in particular for SEM, SDEM and SLX models.
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Finally, it is also interesting to write the gradient of S = (S1, S2) with respect to X =
(X1, X2), as this representation will be use in the next subsection for the general case:

dS
dX

=

(
∂S1
∂X1

∂S1
∂X2

∂S2
∂X1

∂S2
∂X2

)
=

(
β+ρθ
1−ρ2

θ+ρβ
1−ρ2

θ+ρβ
1−ρ2

β+ρθ
1−ρ2

)
(5)

The diagonal terms are therefore themarginal effects of covariatesX1 andX2 on S1 and
S2, respectively. The off-diagonal terms are the marginal impacts of X2 (resp. X1) on
S1 (resp. S2).

5.3. Interpreting coefficients: general case

More generally, equation 2 can be rewritten:

St = (1− ρW )−1(Xtβ +WXtθ + ν + δtιN + ut) (6)

Using the Taylor expansion of the inverse matrix: (1−ρW )−1 = 1+ρW +ρ2W 2+ ..., we
see that in fact an infinite number of spatially lagged values of the covariates and of the
error term appear in the equation for S, corresponding to neighbours of neighbours,
etc. Also, as |ρ| < 1, the closest neighbours have the most influence. LeSage and Pace
[17] suggest that the marginal effect be decomposed into a direct effect and an indirect
(or spillover) effect, the sum of which is the total effect (which can only be considered
when the change in a covariate occurs globally and identically). Indeed, we can write
themarginal effects of the rth covariate on the dependent variable as the followingN×N
matrix, which is the generalisation of equation 5:

∂S

∂x′
r

= (1− ρW )−1(1Nβr +Wθr) (7)

As in the simplified case, the partial derivative at line i and column j quantifies how
an infinitesimal change of covariate r in region j impacts S in region i. In particular,
the diagonal terms represent the direct marginal effects and off-diagonal elements the
indirect ones. From there, we can compute average direct, indirect and total marginal
effects, the latter being the sum of the two former ones21.

Finally, measures of dispersion of the estimated direct, indirect and total marginal ef-
fects are also needed for inference. Indeed, due to their computation, nothing can be
said for these from the standard deviations and levels of significance of the “raw” es-
timates. Again, we follow LeSage and Pace [17], who suggest to produce empirical
distributions of the parameters “using a large number of simulated parameters drawn
from the multivariate normal distribution of the parameters implied by the maximum
likelihood estimates” (p.39). LeSage and Pace [18] then suggest to usemedians as point
estimates and scaled median absolute deviations (MAD) as measures of dispersion,
which are more robust to outliers and distribution asymmetry than the sample mean
and standard deviation.

21In SDEM and SLX models, (in)direct effects are simply the coefficients of the (spatially lagged) co-
variates, since there is no endogenous spatial autocorrelation.
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5.4. Direct, indirect and total marginal effects

Table 5 below shows the simulated direct, indirect and total marginal effects, along
with p-values, levels of significance, and 95% confidence intervals, as recommended
e.g. by Armstrong [3]. These are based on 10,000 simulations realised using a personal
program written in R.

Direct Indirect Total
Y (kW/kW) 0.0435∗∗∗ -0.0132∗∗∗ 0.0302∗∗∗

(2×10−16) (3×10−4) (6×10−12)
[0.0344;0.0524] [-0.0f195;-0.0077] [0.0230;0.0375]

T (e/kW/kW) -300∗∗∗ 138∗∗∗ -155∗∗

(0.002) (0.010) (0.033)
[-460;-137] [61;239] [-279;-39]

1[t > ti] (kW) 7,855∗ -3,717 3,915
(0.082) (0.105) (0.209)

[484;15,457] [-8,063;-420] [-1,093;9,178]

1[t = ti] (kW) 13,497∗∗ -6,726∗∗ 6,394∗

(0.018) (0.036) (0.091)
[4,381;22,866] [-12,786;-2,268] [480;13,064]

Note: p-values are in parentheses.
Asterisks denote significance levels of 99% (***), 95% (**), and 90% (*).
95% confidence intervals are in brackets.

Table 5 – Direct, indirect and total marginal effects of the GNS model

As expected, the direct and total marginal effects have the sign of the coefficients of the
non-lagged variables in table 4, and the indirect ones have the opposite sign. The direct
marginal effects are higher, which is a consequence of the “feedback”, but the increase
ismore than compensated by the indirect effects, so that the total effects are smaller than
the non-lagged estimates. This illustrates the difficulty to interpret the “raw” estimates.
Only the post-enforcement quarter dummy has little significance, especially in its total
marginal effect.

Concerning the installed base, we see that on average, an additional MW in a region
increases the quarterly requests by 43.5 kW, and an additionalMW in each region leads
to an increase of 30.2 kW. These values may seem small but can nevertheless lead to an
important increase in the long run, as long as there is no “stock” effect.

An increase of the network charge in a region T of 1e/kW reduces the connection re-
quests by 300 kW and increases it by 138 kW in neighbouring regions, as a consequence
of substitution. These values are quite significant and relatively high, which shows that
the schemes have sent appropriate locational signals. For instance, the inter-quartile
difference of network charges is equal to 25.52e/kW, which means a (direct effect) dif-
ference of 7,656 kW in quarterly connection requests, while themean capacity request is
equal to 9,225 kW (see table 3). In the short run, the implementation of the schemes have
had a positive impact on the connection requests, which may be due to a “deadline”
effect. On average, 6,394 additional kW have been installed in each region due to the
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enforcement of the schemes. In the long run, the impact would be of 3,915 kW/quarter,
although this estimate is not very significant (contrarily to the direct impact).

Finally, table 6 below displays the overall direct, indirect and total effects of the net-
work charge plus scheme enforcement per region (i.e. βT ×T +β1[t>ti]). We see that the
direct and total impacts are positive in 15 out of 21 regions, and negative in 6. Thus,
the positive effect of the schemes compensates the negative one of the network charge
in most regions. On average, the schemes have only slightly increased the quarterly
demand for wind projects, and are consequently almost neutral regarding the capac-
ity requests at the national level. Nevertheless, they have led to a more efficient (in
the sense of network constraints) spatial distribution of these requests, which was one
of the goals of this regulation. Although these values do not reflect the exact reality,
since they have been computed using statistical estimates, it is interesting to analyse
them by looking at neighbouring regions. For instance in the South, the Rhône-Alpes
region may have benefited from a rather low network charge while its neighbours Au-
vergne and Languedoc-Roussillon were negatively affected. Similarly, in the North,
Nord-Pas-de-Calais and Haute-Normandie may have benefited from a low charge as
well as from a high charge in the neighbouring Picardie. Looking at the map of con-
nected wind farms in appendix 3, we can see that there exist several wind farms close
to the borders of these regions. This makes the above explanations quite plausible.
In addition, substitution may also occur on a larger scale than just across the borders,
depending on how large potential sites are.

Region Charge (e/kW) Direct Indirect Total
Alsace 0 7,855 -3,717 3,915

Aquitaine 23.37 843 -441 300
Auvergne 48.4 -6,657 2,948 -3,587

Basse-Normandie 9.81 4,911 -2,334 2,384
Bourgogne 16.92 2,829 -1,353 1,245
Bretagne 10.11 4,840 -2,270 2,303
Centre 20 1,822 -876 784

Champagne-Ardenne 49.26 -6,876 3,077 -3,794
Franche-Comté 10.64 4,671 -2,217 2,235

Haute-Normandie 10.19 4,837 -2,271 2,297
Île-de-France 1.5 7,418 -3,503 3,685

Languedoc-Roussillon 35.63 -2,807 1,232 -1,628
Limousin 22.56 1,073 -534 383
Lorraine 18.21 2,373 -1,184 1,002

Midi-Pyrénées 69.9 -13,022 5,944 -6,936
Nord-Pas-de-Calais 9.19 5,156 -2,417 2,501

Pays de la Loire 13.38 3,889 -1,805 1,812
Picardie 58.6 -9,722 4,343 -5,163

Poitou-Charentes 42.36 -4,734 2,158 -2,667
Provence-Alpes-Côte d’Azur 18.48 2,358 -1,111 998

Rhône-Alpes 9.51 5,002 -2,364 2,460
Average 23.7 765 -414 216

Table 6 – Expected regional effects of the regional connection schemes (kW/quarter)
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VI. CONCLUSIONS AND POLICY IMPLICATIONS

We have shown that regional network connection schemes for renewable energy have
had a significant impact on the diffusion of wind energy. This relatively unique regu-
lation consists in a per-kW fee that aims at sharing network reinforcement costs among
RES producers of more than 100 kW. This charge is differentiated between regions,
which enhances locational arbitrage opportunities when adjacent regions have distinct
charges or when only some of them have implemented their scheme. This substitution
can be seen through the study of spatial autocorrelation, which is found to be nega-
tive, as is the impact of the network charge. The regulatory framework also aims at
removing the uncertainty on connection charges due to the deep-cost methodology
that prevails in France, and we show that this is indeed the case, as the overall effect is
almost neutral on average and positive for most regions.

Moreover, we have shown that the cumulative installed capacity has had a positive and
significant impact on connection requests. This highlights the “epidemic” behaviour of
the diffusion process, which is sometimes neglected in the assessment of renewable en-
ergy policies. Similarly, spatial interactions are often forgotten in econometric studies.
This is unfortunate, as their omission usually gives biased and inconsistent estimators.
Hence, we hope that our positive results will encourage more econometricians to use
spatial models in the future.

In the end, the conclusive results of the French regulation could lead other countries to
use similar schemes to help promote renewable energy and planning its development
by taking the existing network constraints into account. Thismay avoid or delay unnec-
essary and costly network reinforcements, if these are charged in a “reasonable” way
to the producers. However, the French schemes also have some drawbacks. For exam-
ple, once the regional target is attained, another target and a new scheme have to be
defined. On the contrary, if the target is never met, or not in time, some producers may
have payed for unnecessary reinforcements. Also, although the choice of proportional
charges is easy to understand and may seem rather natural, one could think of other
cost-sharing methodologies, as discussed in the cooperative game theory literature. Fi-
nally, one could also challenge the choice of the regional scale for such schemes. Indeed,
transmission and distribution networks may differ in topology within the same region,
hence leading to potential inefficiencies. Despite their imperfections, these schemes
remain quite innovative in a highly regulated energy sector, and have proven to have
achieved their goals.
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APPENDICES

A. REGIONAL CONNECTION SCHEMES DATA

Region Enforcement Enforcement Network reinforcement
date (d/m/y) quarter charge (e/kW)

Alsace 21/12/2012 2012 Q4 0
Aquitaine 15/04/2015 2015 Q2 23.37
Auvergne 28/02/2013 2013 Q2 48.40

Basse-Normandie 16/09/2014 2014 Q3 9.81
Bourgogne 21/12/2012 2012 Q4 16.92
Bretagne 07/08/2015 2015 Q3 10.11
Centre 20/06/2013 2013 Q2 20.00

Champagne-Ardenne 27/12/2012 2012 Q4 49.26
Champagne-Ardenne (modified) 29/12/2015 2015 Q4 53.17

Franche-Comté 12/09/2014 2014 Q3 10.64
Haute-Normandie 24/10/2014 2014 Q4 10.19

Île-de-France 04/03/2015 2015 Q1 1.50
Languedoc-Roussillon 08/01/2015 2015 Q1 35.63

Limousin 16/12/2014 2014 Q4 22.56
Lorraine 18/11/2013 2013 Q4 18.21

Midi-Pyrénées 08/02/2013 2013 Q1 69.90
Nord-Pas-de-Calais 21/01/2014 2014 Q1 9.19

Pays de la Loire 13/11/2015 2015 Q4 13.38
Picardie 26/12/2012 2012 Q4 58.60

Poitou-Charentes 07/08/2015 2015 Q3 42.36
Provence-Alpes-Côte d’Azur 26/11/2014 2014 Q4 18.48

Rhône-Alpes 15/01/2016 2016 Q1 9.51

Table A.1 – Regional connection schemes data set
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Figure A.1 – Histogram of network connection charges (e/kW

B. FIXED EFFECTS OF THE GNS PANEL MODEL

Estimate Std. Error t-value p-value
Intercept 13658.83 1260.89 10.83 0.00

Quarter Estimate Std. Error t-value p-value
1998 Q1 -12331.80 4553.97 -2.71 0.01
1998 Q2 -13658.83 4553.97 -3.00 0.00
1998 Q3 -13658.83 4553.97 -3.00 0.00
1998 Q4 -13658.83 4553.97 -3.00 0.00
1999 Q1 -13658.83 4553.97 -3.00 0.00
1999 Q2 -13658.83 4553.97 -3.00 0.00
1999 Q3 -13658.83 4553.97 -3.00 0.00
1999 Q4 -13658.83 4553.97 -3.00 0.00
2000 Q1 -13658.83 4553.97 -3.00 0.00
2000 Q2 -13658.83 4553.97 -3.00 0.00
2000 Q3 -13658.83 4553.97 -3.00 0.00
2000 Q4 -13128.02 4553.97 -2.88 0.00
2001 Q1 -11918.91 4553.97 -2.62 0.01
2001 Q2 -8555.58 4553.97 -1.88 0.06
2001 Q3 -7574.03 4553.97 -1.66 0.10
2001 Q4 -9838.71 4553.97 -2.16 0.03
2002 Q1 -9300.38 4553.97 -2.04 0.04
2002 Q2 -11126.08 4553.97 -2.44 0.01
2002 Q3 2467.16 4553.97 0.54 0.59
2002 Q4 -1776.35 4553.98 -0.39 0.70
2003 Q1 -8289.61 4553.98 -1.82 0.07
2003 Q2 6835.43 4553.99 1.50 0.13
2003 Q3 4561.22 4554.01 1.00 0.32
2003 Q4 717.88 4554.01 0.16 0.87
2004 Q1 8378.78 4554.01 1.84 0.07
2004 Q2 -6821.93 4554.01 -1.50 0.13
2004 Q3 -3484.94 4554.05 -0.77 0.44
2004 Q4 -9374.52 4554.12 -2.06 0.04
2005 Q1 -2611.69 4554.12 -0.57 0.57
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Quarter Estimate Std. Error t-value p-value
2005 Q2 3659.75 4554.38 0.80 0.42
2005 Q3 1909.55 4555.15 0.42 0.68
2005 Q4 1297.88 4556.71 0.28 0.78
2006 Q1 3634.68 4558.26 0.80 0.43
2006 Q2 10894.41 4561.85 2.39 0.02
2006 Q3 9654.99 4568.95 2.11 0.03
2006 Q4 7826.10 4577.97 1.71 0.09
2007 Q1 5428.56 4583.60 1.18 0.24
2007 Q2 8456.60 4589.26 1.84 0.07
2007 Q3 29937.95 4598.13 6.51 0.00
2007 Q4 13056.49 4609.32 2.83 0.00
2008 Q1 15856.06 4611.44 3.44 0.00
2008 Q2 12157.34 4622.11 2.63 0.01
2008 Q3 -834.86 4642.85 -0.18 0.86
2008 Q4 -6099.02 4663.67 -1.31 0.19
2009 Q1 -3122.99 4682.30 -0.67 0.50
2009 Q2 -2061.68 4702.77 -0.44 0.66
2009 Q3 1039.38 4711.72 0.22 0.83
2009 Q4 8727.06 4736.49 1.84 0.07
2010 Q1 4279.41 4747.98 0.90 0.37
2010 Q2 -10401.89 4765.46 -2.18 0.03
2010 Q3 2439.00 4785.30 0.51 0.61
2010 Q4 -4456.64 4811.45 -0.93 0.35
2011 Q1 -1557.99 4834.10 -0.32 0.75
2011 Q2 1335.07 4845.17 0.28 0.78
2011 Q3 -4266.10 4874.41 -0.88 0.38
2011 Q4 -158.52 4888.69 -0.03 0.97
2012 Q1 42373.60 4898.91 8.65 0.00
2012 Q2 14026.62 4915.77 2.85 0.00
2012 Q3 10855.68 4943.71 2.20 0.03
2012 Q4 14988.78 5498.87 2.73 0.01
2013 Q1 -3516.84 5296.05 -0.66 0.51
2013 Q2 -5803.78 5442.14 -1.07 0.29
2013 Q3 -2984.61 5494.88 -0.54 0.59
2013 Q4 19814.30 5606.59 3.53 0.00
2014 Q1 8328.60 5708.62 1.46 0.14
2014 Q2 17568.97 5751.89 3.05 0.00
2014 Q3 -2703.37 6113.82 -0.44 0.66
2014 Q4 8235.28 6664.42 1.24 0.22
2015 Q1 4414.29 7156.27 0.62 0.54
2015 Q2 -1122.16 7447.25 -0.15 0.88
2015 Q3 9859.11 7782.28 1.27 0.21
2015 Q4 -4378.45 8100.20 -0.54 0.59
2016 Q1 -3238.09 8431.23 -0.38 0.70
2016 Q2 -5588.10 8636.01 -0.65 0.52

Table B.1 – Time fixed effects
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Quarter Estimate Std. Error t-value p-value
Alsace -11740.60 2705.85 -4.34 0.00

Aquitaine -9183.25 2545.21 -3.61 0.00
Auvergne -2771.48 2715.80 -1.02 0.31

Basse-Normandie -3274.91 2936.67 -1.12 0.26
Bourgogne 3871.00 2685.84 1.44 0.15
Bretagne -2751.45 2938.84 -0.94 0.35
Centre -8.61 2819.01 -0.00 1.00

Champagne-Ardenne 11433.49 2843.67 4.02 0.00
Franche-Comté -8299.50 2709.97 -3.06 0.00

Haute-Normandie -622.24 2794.20 -0.22 0.82
Île-de-France -377.90 2930.52 -0.13 0.90

Languedoc-Roussillon -2847.65 2655.58 -1.07 0.28
Limousin -6071.56 2622.98 -2.31 0.02
Lorraine -1345.37 2759.56 -0.49 0.63

Midi-Pyrénées -3204.37 2675.93 -1.20 0.23
Nord-Pas-de-Calais 20745.83 3439.32 6.03 0.00

Pays de la Loire 2202.55 2841.97 0.78 0.44
Picardie 29915.83 3043.46 9.83 0.00

Poitou-Charentes 436.21 2624.18 0.17 0.87
Provence-Alpes-Côte d’Azur -9101.09 2590.67 -3.51 0.00

Rhône-Alpes -7004.94 2592.32 -2.70 0.01

Table B.2 – Region fixed effects
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C. MAP OF CONNECTEDWIND FARMS

Figure C.1 – Map of wind connected wind farms on January 1st, 2015. Source: Windus-
try France [32]. Note: Values of connected capacity do not match our data exactly as
we only have connections on Enedis’ network.
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