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As market intermediaries, electricity retailers buy electricity from the wholesale market or self-generate for
re(sale) on the retail market. Electricity retailers are uncertain about how much electricity their residential
customers will use at any time of the day until they actually turn switches on. While demand uncertainty is a
common feature of all commodity markets, retailers generally rely on storage to manage demand uncertainty.
On electricity markets, retailers are exposed to joint quantity and price risk on an hourly basis given the physical
singularity of electricity as a commodity. In the literature on electricity markets, few articles deal on intra-day
hedging portfolios to manage joint price and quantity risk whereas electricity markets are hourly markets. The
contributions of the article are twofold. First, we define through a VaR and CVaR model optimal portfolios for
specific hours (3 am, 6 am,. . . ,12 pm) based on electricity market data from 2001 to 2011 for the Frenchmarket.
We prove that the optimal hedging strategy differs depending on the cluster hour. Secondly, we demonstrate
the significantly superior efficiency of intra-day hedging portfolios over daily (therefore weekly and yearly)
portfolios. Over a decade (2001–2011), our results clearly show that the losses of an optimal daily portfolio are
at least nine times higher than the losses of optimal intra-day portfolios.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and literature review

In competitive wholesale and retail electricity markets, electricity
retailers buy electricity from producers through long-term contracts,
on the day-ahead/spot market, or self-generate, for (re)sale on the
retail market. On the residential segment, retailers have to serve
fluctuating load at usually fixed predetermined prices (Boroumand
and Zachmann, 2012; Bushnell et al., 2008). As market intermedi-
aries, retailers have the contractual obligation to harmonize their up-
stream (sourcing) and downstream (sales) portfolios of electricity
(Boroumand, 2015). Demand uncertainty is a common feature of
all commodity markets and is traditionally managed through inven-
tories. For all commodity retailers, inventories enable intertemporal
arbitrages and facilitate matching between sourcing and selling

portfolios in accordance with supply/demand variability. However,
in electricity markets, retailers are uncertain about how much electric-
ity their customers will consume at any hour of the day until they actu-
ally turn switches on. In standard electricity retail contracts, retailers
operate under an obligation to serve and cannot curtail delivery (except
in the case of the so-called ‘interruptible contracts’). On the supply side,
the economic non-storability of (large) electricity volumes contributes
to make electricity markets very specific. Consequently, electricity
needs to be generated and consumed simultaneously. This non-
storability contributes to the exceptionally high volatility of electricity
wholesale prices in most spot markets around the world (Geman,
2008). The crucial dimension of price formation in electricity markets
is the instantaneous nature of the product (Bunn, 2004) leading to
structural price jumps (Goutte et al., 2013, 2014). Regardless of how re-
tailers hedge their expected load, they will inevitably be short or long
given demand stochasticity. Any corresponding adjustment on the
spot market will be made at volatile hourly prices whereas retail prices
are generally fixed for a significantly longer period given consumers'
risk aversion (generally 1 year minimum with tacit conduction). This
asymmetry of price patterns combined to demandvariability can gener-
ate very high losses for retailers which are not efficiently hedged
(Boroumand, 2009). Indeed, retailers cannot pass through increases of
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wholesale prices to their customers either because of potential losses of
market shares on a longer run or because electricity prices are frozen
(like in most US states). Given the strong positive correlation and mul-
tiplicative interaction between load level and spot price (Stoft, 2002),
any under- or over-contracted position will be settled at themost unfa-
vorable times. Most likely, when retailers are short (consumption ex-
ceeds demand forecasts), spot prices are high and above retail prices.
Reversely, when retailers are long, spot prices will most likely be
lower than their average sourcing cost. To sumup, the hourly variability
of demand, its inelasticity, and the rigidity of supply (non-storability
and plant outages) expose retailers' net profits to hourly volumetric
and price risks, both correlated with weather conditions (Stoft, 2002).
Price and quantity risks can bess very severe given that supply and de-
mand conditions usually shift adversely (Stoft, 2002). Suppliers' profits
depend on electricity demand, spot price, and retail price. Since retail
prices are usually fixed for residential customers (Henney, 2006), profit
is strongly impacted by hourly spot price variations. Consequently, re-
tailers are unable to hedge their electricity sales by only trading in for-
ward and spot markets on a monthly, weekly, or daily basis. They
need to engage in riskmanagement strategies on an hourly basis tomit-
igate the exposure of their profits or their opportunity cost (if they self-
generate) exposed to joint price and volumetric risk. As a consequence
of electricity liberalization, a wide variety of hedging instruments have
emerged to enable economic agents to manage their risks (Geman,
2008; Hull, 2005; Hunt, 2002; Hunt and Shuttleworth, 1997). Since
quantity risk is non-tradable (i.e. cannot be transferred by a retailer to
another economic agent), hedging consists in price-based financial in-
struments (Brownand Toft, 2002). In electricitymarkets, efficient hedg-
ing should be against variations in total costs (quantity times price),
which is complex with hourly demand variability. A retailer profit fac-
ing a multiplicative risk of price and quantity is nonlinear in price.

Therefore, hedgingwith linear payoff instruments (forward and futures
contracts) is not efficient (Boroumand and Zachmann, 2012). Conven-
tional hedging strategies deal with one source of uncertainty. Method-
ologies to hedge price risk have been studied by the literature.
However, hedging joint price and quantity risk for electricity retailers
remains an outstanding issue. The literature on risk management with-
in electricity markets adopts usually the perspective of electricity pro-
ducers (Conejo et al, 2008; Paravan et al., 2004; Pineda and Conejo,
2012; Roques et al, 2006). Chao et al. (2008) deals with the vertical al-
location of risk bearing within the electricity value chain. On retailers'
perspective, Boroumand and Zachmann (2012) compare the risk pro-
files of different financial and physical hedging portfolios according to
the Value at Risk (95%). By defining optimal annual hedging portfolios,
they show the risk management benefits of relying on financial options
and physical assets with different marginal costs (base, semi-base, and
peak plants). Chemla et al (2011) show the superior efficiency of verti-
cal integration over forward hedging when retailers are highly risk
averse. Xu et al. (2006) present amidterm power portfolio optimization
and the correspondingmethodology to manage risks. Oum et al (2006)
and Oum and Oren (2010) obtain the optimal hedging strategy with
electricity derivatives by maximizing the expected utility of the hedged
profit (Oum et al, 2006) and the expected profit subject to a VaR
constraint (OumandOren, 2010). The authors explore optimal procure-
ment time of the hedging portfolio. VehvilŠinen and Keppo (2003)
study the optimal hedging of price risk using a mix of electricity deriv-
atives. Carrion et al (2007) develop a risk-constrained stochastic
programming framework to decidewhich forward contracts the retailer
should sign and at which price it must sell electricity in order to maxi-
mize its expected profit for a given risk exposure. Carrion et al (2009)
propose a bilevel programming approach to solve the medium-term
decision-making problem of an electricity retailer.
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Fig. 1. Spot electricity price for each cluster hour from 27 Nov 2001 to 8 March 2011.
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However, to our knowledge, few articles propose portfolio optimiza-
tion based on intra-day hedging for electricity intermediaries, despite
the well-known structural electricity price spikes subsequent notably
to the non-storability of electricity. The frequency of spot hourly price
spikes reinforces the necessity of intra-day hedging strategies.

Our results clearly demonstrate that the optimal hedging portfolio
varies in relation with the hours of the day. The contribution of the
article is twofold. First, our model demonstrates that the average of
the cumulated hourly losses [as measured by the average VaR and
CVaR] of the eight homogeneous group of hours is lower than the VaR
(95%) and the corresponding CVaR of a single daily optimal portfolio.
Therefore, we propose several optimal hedging portfolios per day.
Secondly, for any group of hours, we demonstrate that the optimal port-
folio is specific.

The article is structured as follows: Section 1 presents the statistical
features of the simulated data. Section 2 presents our methodology. In
Section 3, we present the results of our simulations. The last section
concludes and provides policy recommendations.

2. Data

The methodology is an extension of Boroumand and Zachmann
(2012) with two key differences. First, we realize simulations on
electricity price and volume data over a 10-year period (2001–2011).
The extensive data simulation contributes to the high robustness of
our results. Second, we test intra-day portfolios rather than annual
portfolios. Therefore, we calculate intra-days VaR for each hourly
cluster. We take the French spot electricity price from 27 Nov 2001 to
8 March 2011.

Our model relies on data from the French spot electricity market
from 27 Nov 2001 to 8 March 2011. This market is relevant for several
reasons. First, the spot price is the reference price of the French whole-
sale market. Indeed, many retailers index their price on the referential
spot price. Overall, the EPEX spot auction represents 70% of all day-
ahead transactions. Admittedly, the size of the market in 2001 was
smaller but it has never been an extension of the incumbent, which
is an actor among others. Indeed, EDF uses mainly its production
for its own portfolio of clients. The French spotmarket is the 3rd biggest
market in Europe in terms of volume (687 TWh in 2011), the HHI index
is low (691 for the last semester of 2011), and the liquidity is high with
57858 transactions for the first semester of 2011 (CRE,2 2011).

We define eight different hourly prices, namely, our cluster hours,
which are 3 am, 6 am, 9 am, 12 am, 3 pm (15), 6 pm (18), 9 pm (21),
12 pm (24).

Fig. 1 clearly exhibits spot price spikes. Fig. 2 shows the different
levels of consumption volume and variability for each cluster hour.

3. Hedging strategies

We demonstrate that a retailer cannot reproduce the risk-reducing
benefits of physical hedging by pure contractual portfolios. For this
purpose, we compare the risk profiles of different portfolios of hedging
with the traditional Value at Risk (VaR) indicator. The Value at Risk
(VaR) is an aggregatedmeasure of the total risk of a portfolio of contracts
and assets. TheVaR summarizes the expectedmaximum loss (worst loss)
of a portfolio over a target horizon (10 years in this article)within a given

2 Observatoire des marchés de l’électricité et du gaz.

0 1000 2000 3000 4000
3

4

5

6

7

8
x 10

4 Load at3 hour

0 1000 2000 3000 4000
2

4

6

8

10
x 10

4 Load at6 hour

0 1000 2000 3000 4000
3

4

5

6

7

8
x 10

4 Load at9 hour

0 1000 2000 3000 4000
3

4

5

6

7

8
x 10

4 Load at12 hour

0 1000 2000 3000 4000
2

4

6

8
x 10

4 Load at15 hour

0 1000 2000 3000 4000
2

4

6

8

10
x 10

4 Load at18 hour

0 1000 2000 3000 4000
2

4

6

8

10
x 10

4 Load at21 hour

0 1000 2000 3000 4000
2

4

6

8

10
x 10

4 Load at24 hour

Fig. 2. Electricity load for each cluster hour from 27 Nov 2001 to 8 March 2011.
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confidence interval (generally 95%). Thus, VaR is measured in monetary
units, Euros in our article. As the maximum loss of a portfolio, the
VaR(95%) is a negative number. Therefore, maximizing the VaR is equiv-
alent to minimizing the portfolio's loss. We rely on the Value at Risk be-
cause it is a good measure of the downside risk of a portfolio and is for
example used as preferred criteria for market risk in the Basel II agree-
ment. We strengthen the robustness of our results with the CVaR.

The Conditional Value at Risk, CVaR, is strongly linked to the
previous risk measure (i.e. VaR) which is, as mentioned above, the
most widely used risk measure in the practice of risk management. By
definition, the VaR at level α∈(0,1), VaR(α) of a given portfolio loss
distribution is the lowest amount not exceeded by the loss with proba-
bility α (usually α∈[0.95,1]). The Conditional Value at Risk at level α
CVaR(α) is the conditional expectation of the portfolio losses beyond
the VaR(α) level. Compared to VaR, the CVaR is known to have better
mathematical properties. It takes into account the possible heavy tails
of portfolio loss distribution. Riskmeasures of this typewere introduced
by Artzner et al. (1999) and have been shown to share basic coherence
properties (which is not the case of VaR(α).

3.1. Payoff of the assets and contracts within a hedging portfolio

A retailer is assumed to have concluded a retail contract
(the retail contract is given ex ante and is therefore not a portfolio's
parameter of choice) with its customers that imply stochastic demand
Vt for t = 1:T. The demand distribution is known to the retailer and
the uncertainty about the actual demand Vt is completely resolved in
time t. To fulfill its retail commitments, the retailer can buy electricity
on the spot market at the ex ante uncertain spot market price Pt. The
spot market price distribution is known by the retailer. To reduce its
risk from buying an uncertain amount of electricity at an uncertain
price, the retailer can conclude financial contracts and/or acquire
physical generation assets. All contracts (including the retail contract
and the physical assets generation volumes) are settled on the spot
market that is assumed to be perfectly liquid. Thus, the payoff streams
depend on a given number of hourly spot market realizations.

3.1.1. Portfolios' structures
Let denote by πi,t, the price at time t = 1:T of a particular contract

with name i. We consider five different contracts/assets Ð, namely, a
retail contract, a forward contract, a power plant, a call option on the
spot price, and a put option on the spot price given the spot price. In
Table 1, we recall the payoff of these five contracts.

If for example, the electricity spot price (Pt) is above the strike price
of the options (K), there is a positive payoff of the call option, while the
payoff of the put option is zero. The payoff of the power plant depends
on the installed capacity of the plant (Vplant) and its marginal cost
(mc) and only the payoff of the retail contract depends on the stochastic
demand Vt. We subtract the expected valueEð:Þ from the gross payoff all
contracts/assets to obtain a zero expected value. That is, we assume to
be in a perfect and complete market (no market power, no transaction
costs, full transparency, etc.). Consequently, arbitrage would not allow
for the existence of systematic profits.

Without this assumption, themethod for the evaluation of contracts
and assets would drive our results. Indeed, the net loss calculated for
each portfolio would be strongly determined by the valuation method
of the assets or contracts within each portfolio.

3.2. Methodology of numerical simulations

Themarginal generation cost of the power plant is set to themedian
of the simulated spot pricesmc Euro/MWh (second line of Table 2), thus
representing a peak load power plant. The strike price of the options is
set to the expectation value of the spot price K ¼ E½Pt % Euro/MWh
(first line of Table 2).

We clearly see in Table 2 that all statistical indicators on a 10-year
basis vary considerably depending on the cluster. For instance, the
variance price for cluster 3 am is 158.03, whereas it is 2790.30 for
cluster 9 am. In the same vein, the mean price of cluster 3 am is 24.11
whereas it is 57.99 for cluster 12 am. This is related to the fact
that electricity markets are hourly markets. Price and demand variability
are on anhourly basis. This hourly feature and the presence of price spikes
justify an intra-day hedging approach rather than a daily approach.

3.3. The risk minimization

We can calculate the cumulated annual payoffs of the N = 3347
hourly price/volume combinations for all 2000 simulations given the
portfolio (Vforward,Vplant,Vcall,Vput,):

πi ¼
XN

t¼1

πretail;t Pi
t ;V

i
t

! "h i
þ Vforward ' πforward;t Pi

t

! "h i

þ Vplant ' πplant;t Pi
t ;mc

! "h i
þ Vcall ' πcall;t Pi

t ;K
! "h i

þ Vput ' πput;t Pi
t ;K

! "h i
:

ð2:1Þ

Table 1
Payoffs of different contracts/assets given the spot price Pt.

Contract Payoff

Retail contract πretail; t ¼ −Pt :Vt þ E½Pt :Vt %
Forward πforward; t ¼ Vforward:Pt−E½Vforward:Pt %
Power plant πplant; t ¼ Vplant' ;maxðPt−mc; 0Þ−E½Vplant' ;maxðPt−mc; 0Þ%
Call option πcall; t ¼ Vcall' ;maxðPt−K; 0Þ−E½Vcall' ;maxðPt−K; 0Þ%
Put option πput; t ¼ Vput' ;maxðK−Pt ; 0Þ−E½Vput' ;maxðK−Pt ; 0Þ%

Table 2
Descriptive statistics of the simulated data for each cluster hour.

Clusters hours

3 am 26 am 9 am 12 am

Mean price ðE½Pt %Þ 24.11 23.97 46.66 57.99
Median price (mc) 21.77 21.94 42.01 49.87
Mean load 46978.33 46970.76 57137.90 59106.19
Median load 45428.00 45383.00 55431.00 57793.00
Variance price 158.03 153.92 2790.30 4473.27
Variance load 36966692.94 37830907.83 41246907.38 28520369.27

Clusters hours

3 pm 6 pm 9 pm 12 pm

Mean price ðE½Pt %Þ 48.50 44.08 45.17 35.76
Median price (mc) 42.52 39.33 40.52 32.99
Mean load 56482.52 54875.10 55260.57 53092.89
Median load 55659.00 52932.00 54308.00 51468.00
Variance price 1047.84 619.90 1268.30 252.82
Variance load 24607724.92 40756544.24 39911753.29 29013300.90

Table 3
Optimal hedging portfolio for each cluster hour, and for a day. The values of the corre-
sponding VaR and CVaR are also given.

Hour VaR CVaR

Optimal hedging
portfolio

Value Optimal hedging
portfolio

Value

3 am Forward and 3 plants −676.94 Forward and 3 plants −954.53
6 am All possible contracts −782.23 Only forward −1073.72
9 am Forward and Vplant,75 −1615.48 Without options −2692.99
12 am Forward and 3 plants −1449.12 Vplant,25 and Vplant,75 −2499.38
3 pm Forward and 3 plants −1353.29 Forward and 3 plants −2295.76
6 pm Vplant,25 and Vplant,75 −1496.32 Vplant,25 and Vplant,75 −1872.97
9 pm Forward and 3 plants −1210.55 Forward and 3 plants −1979.57
12 pm Forward and 3 plants −943.84 Forward and 3 plants −1687.96
Daily Only options −16095.31 Forward and Vplant,75 −21917.63
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Thus πi is the global payoff of the ith hourly price and volume simu-
lation of a day given the portfolio defined by (Vforward, Vplant, Vcall, Vput,).
Using an optimization routine,3 the portfolio that produces the lowest
VaR(95%) can be identified. As the routine does not necessarily
converge for this nonlinear problem (especially for the three and four
assets case), we rerun the optimization for each case with 100 different
randomly drawn starting values. The result of the best run can be
considered sufficiently close to the global optimum, as all results tend
to be within a fairly narrow range.

The objective is to find the portfolio consisting of one 1 MWh
baseload retail contract and a linear combination of financial contracts
aswell as physical assets that reduces the retailers risk. Thus, the factors
for the other contracts/assets are also measured in MWh. The next ta-
bles give the results given by two types of portfolios that maximize
the VaR(95%).

- portfolios containing one retail contract.
- portfolios containing one retail contract and different power plants.

3.4. Optimization results

All hourly optimization results are given in Appendix (Tables 6–13).
To present more complete results, we give the corresponding daily
optimization results in Table 14.

As shown by Table 3, the simulations show that the optimal hedging
varies considerably for each cluster.

A critical result of this Table is that this variation of optimal hedging
strategy is not only in terms of VaR or CVaR values (i.e. we obtain results
in the range of−1615.38 to−676.94 for the VaR (Fig. 3) and−2692.99
to−954.53 for the CVaR (Fig. 4)) but also in terms of hedging portfolio: 5
(resp. 4) out of 8 optimal portfolios for the VaR (resp. CVaR) criteria are
composed by a combination of a forward contract and 3 powerplants.

Remark 2.1. The complementarity and the non-correlation between
the payoff and the risk level of a forward and 3 different powerplants
(baseload, semi-peak, and peak) portfolio enable more flexibility
given the hourly variability of electricity demand.

Therefore, if a retailer is hedged on a daily basis given its liquidity or
cost constraints, it should at least choose this portfolio (i.e. forward con-
tract and 3 powerplants) to minimize its losses.

3 We proceed under constrained nonlinear optimization or nonlinear programming
using the function fmincon in Matlab.

3am 6am 9am 12am 3pm 6pm 9pm 12pm
−1800

−1600

−1400

−1200

−1000

−800

−600

Cluster Hours

V
aR

 9
5%

Fig. 3. VaR values obtained by the optimal hedging portfolio for each cluster hour on a 10-year basis (in blue). Corresponding mean in red.
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Moreover, we show that a daily hedging optimization is worst than
any hourly hedging optimization (we obtain a VaR of−16095.31 and a
CVaR of−21917.63). This implies that intra-day hedging portfolios are
much more appropriate than single daily portfolios to manage joint
volumetric and price risks on electricity markets.

Confirming on a 10-year period and on an hourly basis, one of the
results in Boroumand and Zachmann (2012), a single forward hedging
is not only never optimal but also inefficient given that electricity
demand is not constant. Table 4 gives the increasing loss using a single
forward hedging instead of the optimal hedging portfolio given in
Table 3.

Indeed, forward hedging is not relevant within markets where de-
mand is stochastic and correlated to the spot price.

Over a decade (2001–2011), our results show that the losses of an
optimal daily portfolio are ten times higher for the VaR criteria (resp.
nine times higher for the the CVaR criteria) than the losses of any opti-
mal intra-day portfolio. We obtain for the optimal daily hedging portfo-
lio a VaR value of−16095.31 (resp. a CVaR value of−21917.63) against
−1615.48 for the worst one in cluster hour optimization (9 am) (resp.
−2692.99 for the worst one again in cluster hour optimization (9 am).

3.4.1. In and out of the money case
An interesting extension of our hedging portfolio optimization is to

test the case of in and out of themoney option.We run our optimization
process for the cluster hour 6 pm (peak demand) with different
strike values for the call option. As mentioned in Section 3.2, the
strike price of the options is set to the expectation value of the spot
price K ¼ E½Pt % Euro/MWh. Thus, regarding the first line of Table 2 for
the cluster hour 6 pm, we have a value of at the money strike equal to
K = 44.08 euros. In Table 5 we take a range of strike price values of
−10 to +10 of K with step of 5 (Table 5).

The more a call option is in the money, the higher is its intrinsic
value. Thus, the spread between all possible contracts and only options
portfolio increases (Table 5). To the contrary, this spread vanishes in
the out of money case.

4. Conclusion and policy recommendations

Our article contributes to the literature on electricity retailers'
risk hedging. We simulate optimal intra-day portfolios given that elec-
tricity markets are hourly markets. First, we demonstrate that the opti-
mal hedging strategy differs depending on the cluster hourwith respect
to VaR and CVaR risk indicators. Second, we prove the significantly su-
perior efficiency of intra-day hedging portfolios over daily (therefore
weekly and yearly) portfolios. Over a decade (2001–2011), our results
clearly show that the losses of an optimal daily portfolio are at least
nine times higher than the losses of optimal intra-day portfolios
(Table 3). A clear understanding of risk management strategies within
electricity markets is crucial for market players, energy regulators, and
financial investors. Without appropriate riskmanagement instruments,
the contribution of electricity retail markets to the global performance

of the electricity industry will remain uncertain (Boroumand, 2015).
We believe that this article contributes to a better understanding of
riskmanagement issues in electricity markets. The challenge for energy
regulators is to enhance the liquidity of risk management instruments
such as intra-day options. A relevant research extension is to propose
a dynamic framework for hedging strategies with distinct and/or addi-
tional financial derivatives.
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