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ARTICLE INFO ABSTRACT

Keywords: The urgency of climate change has led several countries to develop renewable energy in order to reduce
Renewable energy CO, emissions, through the means of various subsidies. In the electricity sector, one drawback of such
Intermittency policies is the negative impact on electricity prices, known as the merit-order effect. This paper aims at
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Markov switching models

assessing how intermittent renewable production depresses electricity prices in Germany, which has ex-
perienced a significant increase of its renewable capacity over the last two decades. To do so, we use a two-
regime Markov switching model, that enables to disentangle the impact of wind and solar generation,
depending on the price being high or low. We find as expected that renewable production induces a ne-
gative marginal effect, which is stronger in regimes of relatively high prices. In addition, we show that
both wind and solar productions have a significant impact on the distribution of prices, and in particular
on the frequency and expected duration of each regime. This has implications in terms of market design,
security of supply, and support mechanisms for renewables.

1. Introduction

The development of renewable energy sources (RES) is often justi-
fied by the need to address global warming, through the reduction of
green-house gases emissions, and is also led by the will to reach energy
independence in fossil and fissile fuel-dependent countries. In the
electricity sector, main RES are wind power and solar photovoltaic
(PV). These technologies are spreading throughout the world and
Europe, which has announced RES targets for the next decades: 20% in
the final energy consumption by 2020 and 27% by 2030. To reach these
goals, renewables often need to be subsidised, as they would generally
not be competitive otherwise on the wholesale market.' In addition to
the aforementioned goals, the subsidisation of these energies aims at
internalising the “learning effect”, i.e. the decrease of their cost along
with their development. This is a positive externality that is by defi-
nition not taken into account by the market, and which would lead to
too few investments in these technologies if not accounted for.

However, the development of electric RES challenges the current
design of electricity markets. Indeed, they were originally designed to

reflect the short-term production cost of electricity via the system
marginal price, i.e. the marginal cost of the last unit needed to meet the
demand. While marginal costs were traditionally driven by fuel costs
such as coal, gas, oil, or uranium; wind and photovoltaic have on the
contrary (almost) no marginal cost. Therefore, they tend to lower prices
when they are producing, which is commonly known as the “merit-
order effect” (Sensfuf3 et al., 2008). In addition, wind and solar energies
are intermittent (or variable), albeit with seasonal patterns, while
electricity prices are highly seasonal, with seasonality being driven
mainly by demand at the daily, weekly and yearly time scales. Hence,
RES generation is likely to have a different impact on electricity prices,
depending on the state of the supply-demand equilibrium. Additionally,
renewable production is expected to affect electricity also globally, and
in particular its distribution, which is only partly captured by the
analysis of the merit-order effect.

This article addresses these issues for the German day-ahead market
by developing a two-regime Markov switching (MS) model. In parti-
cular, we are able to disentangle the merit-order effect in function of
the price level, while keeping temporal coherence of the time series.

* This article is part of a Virtual Special Issue entitled 'Energy and Environment: Transition Models and New Policy Challenges in the Post Paris Agreement'
* Corresponding author at: Université Paris-Dauphine, PSL Research University, LEDa, CGEMP, Place du Maréchal de Lattre de Tassigny, 75016 Paris, France.
E-mail addresses: cyrildelagarde@gmail.com (C. Martin de Lagarde), frederic.lantz@ifpen.fr (F. Lantz).
1 However, distributed renewable generation such as rooftop solar PV is becoming more and more profitable for end-users, as their levelized cost of electricity (LCOE) can in some
places be lower than the retail tariff they are faced with (grid parity). Such consumers, often called “prosumers”, do not need to be subsidised by public funds (even though it is sometimes

the case), but they can benefit from cross-subsidies via the distribution network tariff.
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Furthermore, we allow for time-varying probabilities (inhomogeneous
model), in order to capture the impact of RES on the switching me-
chanism from “high” to “low” prices, and hence on the proportion and
duration of each regime.

Studying the merit-order effect in Germany is quite relevant, as the
country has had a huge development of wind and solar PV over the past
two decades (RAP, 2015). Furthermore, since more than 40% of the
electricity production in Germany (and Austria) is traded on the EEX
day-ahead spot market, the related price is a relatively good indicator of
the electricity supply-demand equilibrium. Hence, for these several
reasons, the choice of Germany seems quite appropriate.

The remainder of the article is structured as follows. In Section 2, we
briefly explain the mechanism behind the merit-order effect as well as
other consequences of renewable production on electricity prices. In
Section 3, we provide a review of the literature on the impact of RES
production on electricity prices as well as on MS models applied to
electricity prices and we explain which gap we aim at filling with this
paper. Then, Section 4 briefly describes the data we used. Section 5
then presents the modelling strategy, and empirical results are pre-
sented and discussed in Section 6. Finally, Section 7 concludes the ar-
ticle by providing the main findings and policy implications.

2. Theoretical analysis

In this section, we use basic microeconomic tools to illustrate how
the merit-order effect arises and why it is differentiated depending on
the price level. We explain also how renewable production is likely to
impact the distribution of prices more globally.

Graphically, we can see that if at the equilibrium the inverse supply
curve? is locally steep, the impact is expected to be higher than when it
is locally flat. In Germany, on average the steepness of the inverse
supply curve increases with load, i.e. it is convex (except in the nega-
tive-price zone). It may not be the case elsewhere, but for example
Karakatsani and Bunn (2008), show that in the British market the ag-
gregate supply function is also convex. Fig. 1 illustrates this case by
showing the variation of the merit-order effect with the load level.

Formally, this can be seen in the following way: if D: p - D(p)
(with (D" < 0) and S: p — S(p) (with S’ > 0) are the expressions of the
instantaneous demand and supply functions, the impact on the price of
an infinitesimal shock of supply (e.g. RES production) or demand would
be at the first order (proof in Appendix A):

op -1
dLoad ~ 9D _
op

dp

=- >0
GRES

ES

dp (@)

In reality, supply and demand are piecewise constant functions, as they
are the result of a bidding process. Hence they have zero derivatives
except in points of discontinuity where they are non-differentiable.
Nevertheless, it is convenient to assume differentiability as it gives the
right insight, and in the case of rather small increments it is a good
approximation. From Eq. (1), it is clear that the higher the slope of the
inverse supply function S~!, the lower the slope of S (equal to its in-
verse), and thus the higher the marginal (merit-order) effect. Note also
that on average the impact of wind, solar and load has no reason to be
the same, as all variables and the supply and demand functions vary
over time. In addition to this marginal effect, RES production is ex-
pected to have a more global impact on electricity prices, in particular
on its conditional or unconditional distributions. For example, we could
expect prices to be “low” more often, especially if complementary sites
can be used for RES installations. Also, conditional volatility is expected
to be higher in periods of “high” prices (because of the same slope ar-
gument), while unconditional volatility can be lower or higher,

2 The inverse supply function S~! gives the price p in function of the supply quantity q.
The inverse supply curve is thus defined by p = S~1(q).
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Fig. 1. Differences in the merit-order effect (source: Risg DTU).

depending on how much more “low” prices (with lower conditional
volatility) there are.

3. Literature review
3.1. Impact of renewable production on electricity prices

The impact of subsidised renewable generation on electricity prices
and its distributional implications have been widely discussed empiri-
cally and theoretically, e.g. by Meyer and Luther (2004), Munksgaard
and Morthorst (2008), Gonzalo Sdenz de et al. (2008), Sensfuf$ et al.
(2008), Cutler et al. (2011), Tveten et al. (2013), Cludius et al. (2014),
Kallabis et al. (2016) and Bublitz et al. (2017). In this topic, the use of
time series econometrics to study the market impact of RES production
is more recent and very abundant as well. Many of them used ARMA-
GARCH models, such as Woo et al. (2011) in Texas, Liu and Shi (2013)
for the ISO-New England market, Ketterer (2014) in Germany or
Karanfil and Li (2017) for the Danish intraday market, just to cite a few
ones. All these analyses found a significant negative impact of RES
generation on electricity prices and a positive one on conditional vo-
latility (when modelled). However, the measured effect is necessarily
averaged over the whole time series due to the used methods. Ad-
ditionally, these studies mainly describe the merit-order effect, but do
not tell how renewable production affects the proportion and duration
of the price levels, which can be an issue for the profitability of plants
relying on episodes of high prices.

Nevertheless, some authors have used other models in order to
capture variability in the merit-order effect and additional properties.
For example, Jonsson et al. (2010) quantify the impact of wind forecast
on electricity prices for each hour of the day using a non-parametric
approach. They also analyse the distributional impacts on the price
under several scenarios, and show in particular that the unconditional
volatility decreases with wind penetration. Unfortunately, they do not
model the underlying mechanisms. In a different fashion, Paraschiv
et al. (2014) estimate the impact of RES generation (and other vari-
ables) on electricity prices in Germany for each hour of the day, using
time-varying coefficients. In particular, they show that the impact of
wind (resp. solar) energy is more important during afternoon, evening
and night hours (resp. noon peak hours).

However, electricity prices are expected to become less and less
deterministic as the share of renewable generation increases and de-
mand-response and storage become more available. This fact calls for a
more flexible approach, which should be based on the level of prices
rather than on predefined periods (hours, days, etc.). In this spirit, Keles
et al. (2013) show that the wind power feed-in has a distinct impact on
prices depending on the load and residual load levels (and hence im-
plicitly on the price level) for each hour and day type. Their analysis is
performed using linear regressions on ascending 2-MW load clusters,
which are then used in a simulation of electricity prices. Unfortunately,
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Fig. 2. Final data.

their modelling does not take into account the temporal connection
between the load clusters, nor discusses the impact on the price dis-
tribution.

3.2. Markov switching models and applications to electricity prices

The general literature on Markov switching models is also wide:
Goldfeld and Quandt (1973) and Hamilton (1990, 1989) for a first in-
troduction to MS models, Cai (1994); Hamilton and Susmel (1994) and
Gray (1996) for MS-(G)ARCH models, and Hamilton (1996) for testing
MS models). Finally, one can also see Krolzig (1997) for MS-VAR, and
Kim et al. (2008) concerning endogenous switching.

Since electricity cannot be stored at a wholesale scale, electricity
prices are highly volatile, with the existence of both positive and
negative price peaks, heavy tails, jumps, etc. Hence, first MS models
applied to electricity were for prices “alone”, as they were able to
capture these peculiarities (Deng, 1998; Ethier and Mount, 1998;
Huisman and Mahieu, 2003; Janczura and Weron, 2010). On dif-
ferent topics, Haldrup et al. (2010) and Haldrup and Nielsen (2006)
show that Nordic electricity prices present long-memory and regime-
switching behaviours, and Cifter (2013) exhibits two distinct vola-
tility regimes using a MS-GARCH model. Other authors have studied
the impact of exogenous variables on the conditional mean
(Zachmann, 2013), on transition probabilities of inhomogeneous MS
models (Mount et al., 2006; Huisman, 2008), or both (Kanamura and
Kazuhiko, 2008). Finally, Veraart (2016) models the impact of wind
production on electricity prices using a regime-switching Lévy semi-
stationary process, with regimes depending on the wind penetration
index.

3.3. Contribution of the paper to the literature

In the end, we believe that a MS model is an appropriate tool to
answer our research question. Indeed, as mentioned above, it has al-
ready be shown that electricity prices present Markovian regime
changes. In addition, MS models estimate time-varying coefficients,
while keeping the temporal integrity of the time series, instead of di-
viding them in distinct series, that would for instance depend on the
price level or on the hour of the day. Indeed, we will show in Section 5
that after applying an appropriate transformation to the price time
series, we can identify two distinct regimes, of respectively “high” and
“low” prices. This feature is very suitable for regime-switching models
as they can give mixture distributions. The estimation then shows that
the regimes are serially correlated, hence justifying the Markovian
switching mechanism. Furthermore, the autocorrelation and

Table 1
Pearson correlation coefficients between the variables.

Wind Price Load
Solar — 0.157 — 0.039 0.331
Wind — 0.424 0.037
Price 0.674
Table 2
Descriptive statistics of the electricity price.
Min Q1 Median Mean Q3
Price (€/MWh) - 1799 254 31.1 32.2 40.0
Max S.D. [AA Skewness Kurtosis
Price (€/MWh) 99.8 12.7 0.39 - 03 6.2
@ Coefficient of variation: C. V. =S. D./ Mean.
o
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Fig. 3. Histogram of price (/MWh).

conditional autoregressive heteroskedasticity observed in electricity
prices can also be captured (Krolzig, 1997). Finally, the chosen MS
model allows us also to quantify some distributional impacts of RES
production through the modelling of transition probabilities, which we
link to the proportion and duration of the price regimes and hence on
the distribution of prices.

4. Data

4.1. Overview of the data and first correlations

Our data is originally composed of four time series for the period
2014-2015, that come from various sources:
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Table 3
Descriptive statistics of load and residual load.
Min Q1 Median Mean Q3
Load (MW) 34, 801 48, 825 57, 237 57, 616 66, 891
Residual load (MW) 5,903 38, 214 45, 845 45, 939.9 53, 905
Max S.D. C.V. Skewness Kurtosis
Load (MW) 79, 120 10, 332 0.18 —0.02 1.8
Residual load (MW) 77, 898 11, 425 0.25 —-0.1 29

® hourly day-ahead electricity spot prices, obtained from EEX-
Powernext;

e solar and wind electricity generation,’ obtained from the four
German TSOs (TenneT, Amprion, 50Hertz, Transnet BW) websites,
at the 15 min time step;

® hourly electricity load (from ENTSO-E website).

We summed the RES generation data of the TSOs and aggregated it
to the hourly time step, in order to obtain 17,520 values for each
variable. Fig. 2 represents the corresponding final time series, and
Table 1 shows the correlation coefficients between the variables.

As one would expect, solar energy has a strong yearly seasonality,
with much more production during summer, while wind energy has a
relatively opposite seasonality, and they are indeed negatively corre-
lated. Obviously, solar generation follows also a daily pattern (day/
night), which is not observed for wind. The electricity demand is very
cyclical as well, with annual and daily patterns, the latter being prob-
ably the reason for the positive correlation with solar production. We
also find these patterns in the price series, which is highly and posi-
tively correlated with load, negatively with wind, and almost not cor-
related with solar generation. The seasonality of these price and load
time series will be more thoroughly discussed in Section 4.4. Finally,
although the electricity consumption is higher in winter, essentially
because of heating and lighting, there is a huge decrease in demand
(and hence in price) during the Christmas holidays, because of a drop in
the industrial activity (Do et al., 2016).

4.2. Price statistics

Since we are interested in modelling the electricity prices, we need
to take a deep look at the price time series, which is the goal of this
subsection. Table 2 below present the main descriptive statistics of the
price time series. First of all, we notice that the price is quite volatile,
has heavy tails and is slightly skewed, which are common features of
electricity prices, and can be the result of a regime-switching me-
chanism (Krolzig, 1997). As already seen in Fig. 2, there are negative
prices (190 occurrences, i.e. a little more than 1% of the total), and high
positive spikes as well. These well-known specificities of electricity
prices are mostly due to the fact that electricity is (almost) non storable.
Hence, demand must be met by production at all time, while

3 As suggested by Jonsson et al. (2010), the day-ahead forecast would be a better
candidate than the actual energy output, since production decisions are taken on the basis
of forecasts. However the forecast data provided by the TSOs was incomplete, and many
actors have they own forecast, which may differ from the one made by the TSOs. Finally,
using real production instead of forecast values should not dramatically change the value
of the coefficients, but rather the goodness of fit.
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conventional plants have flexibility constraints (limited ramp up/down
in particular). Any change in demand and/or generation will then have
an immediate impact on the price, that reflects the supply-demand
equilibrium. The histogram (Fig. 3 below), the normal QQ-plot (Fig. 17,
Appendix B) and the boxplot (Fig. 18, Appendix B) illustrate the pre-
vious analysis and show strong evidence of non-normality, which is
confirmed by a Jarque-Bera test ((p — value < 2.2. 10716).

It is also interesting to look at the “complete” histogram in Fig. 19
(Appendix B). Indeed, we can see that there are some isolated spikes,
for example near zero, that probably correspond to marginal prices of
some specific units and in particular RES. A closer look around zero
shows that there is in fact a range of prices from approximately —0.10
to 0.10/MWh (Fig. 20 in Appendix B).

Finally, we make sure that the price time series is stationary by
performing two unit root tests: augmented Dickey-Fuller, Phillips-
Perron; and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) stationarity
test (Appendix B, Table 8). All these tests show that the price time series
is stationary.

4.3. Load-related statistics

If we now look at the histogram of load (Fig. 4, left), we see that
there appears to be two modes, with respectively “high” and “low”
demand. When studying relations between price, RES production and
demand, it is frequent to consider the residual demand, i.e. demand
minus RES generation. The histogram of the residual load is visible
on Fig. 4 right. We clearly see that the “high-demand mode” has
disappeared, which could be explained by the high correlation be-
tween demand and solar production due to their daily seasonality.
The descriptive statistics of the load and residual load are shown in
Table 3. We see that although the residual demand is still not
Gaussian, it is more volatile (due to the volatility of the wind and
solar outputs), and has slighlty heavier tails. It is also interesting to
note that although RES production strongly contribute to off-peak
load reduction (-28.9 GW), it only generates a 1.2 GW decrease of
peak demand.

Furthermore, residual load (net demand) has a correlation coeffi-
cient with price of 0.88, which makes it a “better” candidate for the
model than gross demand (p = 0.67). Similarly, it is often convenient to
study the relative share of RES production, as suggested by Jénsson
et al. (2010). In our case, they have higher correlation coefficients with
price (—0.56 for wind and —0.095 for solar) than RES generation itself,
but also with residual load (—0.62 and —0.18). This could possibly
lead to high variance inflation factors, but as we will see in Section 6,
the obtained coefficients are significant and stable.

4.4. Price and load seasonality

Electricity prices are highly seasonal, mainly because of the demand
seasonality. To illustrate this, the left graph on Fig. 5 below shows the
power spectra (or periodograms) of the price and residual load time
series. These enable to detect the dominant frequencies (or equiva-
lently, periods) in the series. We find that the price and residual load
have identical periods, i.e. 12h, 24h, 168 h (a week) in particular,
which was expected. Furthermore, the right graph on Fig. 5 represents
the squared coherency spectrum, which is the amplitude of the cross-
correlation function. It shows which percentage of the variance is
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shared by the two variables at each frequency.* This analysis confirms
that the seasonality of electricity prices is mainly driven by the (re-
sidual) demand.

This seasonality affects the distributions of price and (residual) load,
but our analysis strongly suggests that these variations will be corre-
lated, given the very high correlation between the price and the re-
sidual load, both in the temporal and frequency domains. Thus, it seems
sufficient to control for this seasonality using the residual load as a
covariate in the model. In particular, we seek to keep the model as
parsimonious as possible, as MS models can prove very difficult to es-
timate. Indeed, having too many regressors can lead to non-con-
vergence or local convergence (i.e. wrong estimates). Furthermore,
differentiating the model for each season and type day would require
dividing the series accordingly and hence break the temporal integrity,
which we wish to avoid as the series present some autocorrelation, that
the MS model takes (at least partly) into account.

5. Methodology

In this section, we first present the transformation that we apply on
the price time series, before exposing the model itself.

5.1. Variable transformation

It is quite common in time series analysis to perform a logarithmic
(or sometimes a Box-Cox) transformation. Indeed, the logarithmic
transformation has several interesting properties, from reducing the
weight of extreme values (and more generally reducing non-normality).
It also enables to interpret coefficients of regressions as elasticities, or to
interpret first differences of the transformed data as rate of returns.

However, we cannot take the logarithm of the price, because of
negative prices (1% of the total). This could be artificially prevented by
adding an offset value to the series so that it would be strictly positive,
enabling then to use the log transformation, as suggested by Sewalt and
Jong (2003). If the offset was low enough compared to the mean, it
would produce little distortion, but in our case, the price goes as low as
-79.9/MWHh, for a mean of 32.2/MWh and a maximum of 99.8/MWh.
Hence, adding 80/MWh to prices and taking the logarithm would then
highly “compress” high prices together while maybe giving “too much”
importance to negative prices.

Furthermore, we want to be able to distinguish the merit-order ef-
fect depending on the level of prices, while keeping a unique and co-
herent time series. It is rather obvious that the previously exposed
methodology will not help us identify price regimes, as prices will be
“stacked” together. Thus, in order to enhance regime identification
while taking into account negative prices and reducing the importance
of extreme values, we use an inverse hyperbolic sine transformation.
This transformation was originally described by Johnson (1949) and
more recently used by Schneider (2012) for electricity prices. This
transformation is achieved by applying the inverse of the hyperbolic
sine function, which is defined by the following expression, with offset
and scale parameters &, 1 € R:

4 On this graph the frequency is obtained by dividing the abscissa by the number of
observations, i.e. 17,520. The period is then the inverse of the frequency, as on the left
figure. The smallest period is 2 h as we are dealing with hourly data. Hence the maximum
frequency is 0.5h ™%

T T T
4000 6000 8000

x> sinh ™ (z) = In(z + V22 + 1)

—ax — sign(z) x (In|z| +In2)

Fig. 6. Inverse hyperbolic sine (red) and symmetric logarithm (green) functions (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.).
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A

f(x’ g’ A) X:E (3)

. 2lxl . IxI

f&x, & 2) e sign(x) x ln( 7 ) = sign(x) x [ln( A ) + lnz] @
Hence,the logarithmic behaviour of the function will “compress” the
extreme values, while its linear behaviour will on the contrary “ex-
pand” intermediate values, hopefully leading to the desired distribu-
tion. Fig. 6 below represents the inverse hyperbolic sine function with
& =0and A = 1inred, and in green the symmetric logarithmic function
(with position factor In 2) and its symmetric with respect to the origin.

There are many ways to choose the values for A and £. For example,
one could use the values that give the most normal mixture distribution,
or that is best fit by the model. In particular, the choice of & will
strongly condition the range of each regime. However, for the sake of
simplicity, we simply decided to take the mean value of the price for &.
This choice enables us to separate the two regimes quite clearly, and
gives them a relatively similar importance as the mean is quite close to
the median. Additionally, we chose A = 1 €/MWh for simplicity reasons
also. As expected, the histogram of the transformed price (Fig. 7) lets
appear two distinct modes, that could not be seen in the original his-
togram. We can highlight the bimodality of the distribution by trying to
fit it as a mixture of two normal distributions. This gives the red and
green densities in Fig. 7: the two modes are well identified, but are not
Gaussian (they have no reason to be, nor is it required by the model).
However, extreme values are indeed reduced for each regime.

5.2. Model
Now that we have described and transformed the data, we develop

an econometric model to quantitatively evaluate the impact of RES
generation on electricity prices. We consider a discrete-time (t € N),
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two-regime MS model, in which the coefficients of the covariates and
the variance of the residuals depend on the value of a latent unobserved
state (or regime) variable S € {1; 2}. The state variable is a Markov
chain, i.e. the probability of switching from a regime is Markovian (it
only depends on its current state, and not its past):

VIEN P(S,=jS1=1i Sz . S0) = P(S; = jISim = 1) = ()
(5)

as visually described in Fig. 8. We denote by P the stochastic matrix
associated with the process:

pu () pp®

vienN Po= [le(t) P (1)

) with: V ie€{l1,2} p,+p,=1

(6)
Then, we have by recurrence that: P
(St = j1Si-1 = i) = (P(O)X...XP(t + k))j). Furthermore, the under-
lying Markov chain is supposed to be ergodic, i.e. irreducible (it is
possible to switch from a state to another with positive probability) and
if all its states are ergodic (i.e. aperiodic and recurrent). We also allow
the Markov chain to be inhomogeneous, with probabilities of transition
varying over time. A simple and widely spread specification for in-
homogeneous MS models is to have the probabilities being described by
a logistic function of external regressors.” In our case, we want prob-
abilities to vary with wind and solar penetration indices. Finally, the
model to estimate is given by Egs. (7)—(9) below (note that all the
parameters of the model are estimated together via maximum like-
lihood):

Wind,
Load;

Solar

V teN Price* = 8.(t) + B, (t
rice; ﬁo( ) Bl( ) Load,

B,(0)

+ B5(t)RLoad; + &

@
where RLoad = Load — Wind — Solar is the residual load, Price* is the
transformed price, and:

Ve N{ﬁ(t) = PO X 1(S; = 1) + BD X I(S; = 2) € R?

& w A0, ()2 X I(S; = 1) + (02)* X I(S; = 2)) (8)

3 It would also be possible to use another specification, for example a probit one as in
Kim et al. (2008), but we think that a logit specification allows to interpret the coeffi-
cients more easily, and should not fundamentally change the results, as it is usually the
case for discrete choice models.
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Table 4
Coefficient estimates.

Variable Coefficient Std. Error z-Statistic p-value
Regime 1
Intercept — 7.171284 0.056058 — 127.9269 0.0000
Wind/Load 1.271735 0.064171 19.81791 0.0000
Solar/Load 1.530959 0.064736 23.64942 0.0000
RLoad 0.000114 1.19¢ — 6 95.71098 0.0000
a 0.581968 0.006004 96.93304 0.0000
Regime 2
Intercept — 3.416402 0.089319 — 38.24955 0.0000
Wind/Load 1.569330 0.135748 11.56058 0.0000
Solar/Load 2.242196 0.126642 17.70505 0.0000
RLoad 0.000106 1.40e — 6 75.80216 0.0000
a2 0.695252 0.008222 84.56472 0.0000
Transition Matrix Parameters
aél) 1.109705 0.059471 18.65958 0.0000
0‘1(1) 5.306012 0.345166 15.37235 0.0000
0‘2(1) 4.464573 0.414828 10.76247 0.0000
aéZ) — 2.762521 0.069484 — 39.75780 0.0000
011(2) 6.971012 0.392717 17.75075 0.0000
“2(2) 1.483876 0.441446 3.361400 0.0008
Table 5
Time-varying transition probabilities and expected durations.
Time-varying transition probabilities p;;(t):
1 2
Mean 1 0.876859 0.123141
2 0.182783 0.817217
1 2
Std. Dev. 1 0.060346 0.060346
2 0.150465 0.150465
Time-varying expected durations:
Regime 1 Regime 2
Mean 12.64588 8.048185
Std. Dev. 13.72816 3.877061
. i (1) i » Wind » Solar;
V teN logit(p,(t)) =1n < L2 ald 4+ a4 gL
1-p, () Load, Load,
©)
1
s pO= N
' (i) (i) Wlndt 0) SOla'}
1+exp|—ay’ —ay’'——— —ay’' ——
Load, Load, (10)
& pO=1-p,0 -
i\t = 1= Pu\t) = )
' ' y Wind,

2 Load,

1+ exp|a’ + all
p( 0 ' Load,

+o® Solar;)

11

It is also possible to compute the expected duration of each state.
This is done numerically for an inhomogeneous model, while for an
homogeneous models the expected duration of regime i € {1, 2} has the
following closed-form expression:

1_ 1
p; 1-p;

+00 T
Eg= ), kP(a=k) = ) kp;pf™" =
k=1 k=1 a2

For an homogeneous ergodic Markov chain, one can also compute the
stationary distribution 7 = (m, ), with ; + m = 1, which by defini-
tion is the probability distribution of states that does not change in
time. These probabilities can be interpreted as the mean proportion of
(or the unconditional probability of being in) each regime:
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An ergodic Markov chains has a unique stationary distribution, and if it
is homogeneous it is also the equilibrium (or limiting) distribution, i.e.
it is reached asymptotically:

o)
o)

For an inhomogeneous Markov chain these values have usually no
closed-form expressions, but can nevertheless be estimated numerically,
which is done with the estimation.

it

n—+oo not. m

lim P" = p* =(
' a4

6. Results and discussion

Let us now present the estimation results, before discussing more in
depth the interpretation of the regimes in a second subsection. Then, we
will derive (average) marginal effects from the model, as the inter-
pretation of the coefficients is not straightforward. Lastly, we will ex-
amine the impact on the structure of the regimes, and in particular their
expected duration.

6.1. Estimation results

The estimation results are presented in Tables 4 and 5 below. All
coefficients are highly significant and significantly different from a
regime to another (Wald tests were performed to test this). It is sur-
prising at first sight that the coefficients associated with the relative
shares of wind and solar productions are positive. However, we will
show in Section 6.3 that we can indeed deduce negative marginal ef-
fects of wind and solar productions. This is due to the fact that these
productions are also present in the residual load variable.®

Furthermore, we conducted several robustness checks. Indeed, the
possible multicollinearity between the three covariates could lead the
estimates to be either non-significant or numerically unstable (Belsley
et al., 2005). The estimation results show that the coefficients are sta-
tistically significant, which rules out the first issue. Regarding numer-
ical stability, we have realised 50 additional estimations after adding
noise to the data. We also estimated the model after removing the first
and last four days from the sample (192 h in total, i.e. roughly 1% of the
whole sample). We found that in all cases the estimates were little af-
fected by these operations, and we thus consider that multicollinearity
is not an issue here.

Concerning the transition matrix parameters, a{” and a{” are both

S We could have chosen a specification whose coefficients could be more easily in-
terpreted, but the chosen modelling was the only one with lowest information criteria and
residual variance, which converged, and which was able to distinguish the two regimes
properly.
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positive, i.e. the probability of staying in or switching to regime 1 (resp.
regime 2) is an increasing (resp. decreasing) function of the relative
shares of wind and solar productions. Fig. 9 shows the evolution of the
modelled probabilities of transition with the relative shares of wind and
solar. This graph reveals two particular features: firstly, the influence of
the wind energy output is much stronger than the influence of the solar
one; secondly, the impact on p;; (and hence on p,,) is quite limited,
compared to the impact on p,, (and p,,).

Table 5 below shows that the mean probabilities of transition are
also significant, hence justifying the switching mechanism. Ad-
ditionally, we showed using Wald tests that p;; and p,, (and thus also
Dy, and p,,) were significantly different from one another. This proves
that the switching mechanism is indeed Markovian, at the opposite of a
“simple” switching model, for which the probability of being in a given
regime would be unconditional (i.e. p;; = p,, and p,, = p;,).

Finally, let us comment the time-varying expected durations: although
regime 1 is on average 4.6 h longer than regime 2, it is also much more
variable. Also, one should not be surprised that the sum of the mean ex-
pected durations does not equal 24 h. In particular, this means that there
can be more than one regime change during a single day.

6.2. Regime visualisation

In this subsection, we now associate the regimes with the levels of
prices and other variables. Fortunately, the estimation procedure
computes for each time step the probability of being in each regime. In
fact three kind of probabilities are computed by the algorithm:

® one-step probabilities: P (S, = ilS;_1);
o filtered probabilities: P (S; = ilS;_1, ...,S1);
e smoothed probabilities: P (S; = il {St}ep.1p)-

Filtered or smoothed probabilities are often used to attribute the
regimes to each time step. We will use smoothed probabilities, but there
is almost no difference with the filtered probabilities in the regime at-
tribution. In practice, the probabilities are very close to 1 or 0, so that
the choice between a regime or another is unambiguous.

6.2.1. Dynamic visualisation

A very common and useful way to visualise the switching process is
shown in Fig. 10 below. From this short sample (first week of Sep-
tember 2014), we clearly see that as expected, the regimes are asso-
ciated to a price mode: prices are higher in regime 2 than in regime 1.
Also, these regimes seem to be quite correlated to the hours of the day.
This is normal since prices are strongly seasonal, as already explained in
Section 4.4. However, there are some exceptions, that the MS model is
able to take into account, as we can see in this example. We find this
week to be rather representative, as it presents the usual daily and
weekly seasonalities of electricity demand and prices while showing the
influence of the variable RES production on prices. Also, as can be seen
later in Figs. 11 and 12, there difference in the attribution of the re-
gimes is much more driven by the type of day than by the season.

These graphs contain a lot of information, and hence need to be
analysed. First of all, we notice the very regular pattern followed by the
load, with a peak at 11 a.m. and very low demand during the night and
the weekend. During the first two days, wind and solar production is
rather low, and the regimes seem to be driven by load only: regime 2
coincides with high demand and high prices, from 6 a.m. to 10 p.m., so
roughly during daytime. On Wednesday and Thursday however, wind
and solar generation increases. This incurs a change in regime with a
decrease in price, respectively from 12 p.m. to 5p.m. and 3p.m. On
Friday, the wind energy output is rather low, but solar production
reaches its week peak at 1 p.m., and there is a slight and quick change
of regime (P(S = 1) = 0.66). Finally, the load decrease during the
weekend, associated with a still strong solar generation, keeps the
prices low.
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Fig. 10. Price, gross demand, wind and solar productions (blue, left axis) and probability of being in regime 1 (red, right axis), first week of September 2014 (For interpretation of the
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Fig. 11. Mean frequencies of occurrence of regime 1 for each hour of the day, for working
days and weekends.
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Fig. 12. Mean frequencies of occurrence of regime 1 for each hour of the day, per season.
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Fig. 13. Transformed price vs. logarithm of load for the two regimes (light grey: regime 1,
dark grey: regime 2).

6.2.2. Seasonadlity analysis of the regimes
Let us now look at the frequency of occurrence of regime 1 for each
hour, per type of day’ (Fig. 11) and season® (Fig. 12). We observe as

7 We do not consider holidays in this analysis, but we believe that it would not change
the results much, and that the pattern would be rather similar to the one observed for
weekends.

8 For simplicity, we considered that winter was running from December to February,
spring from March to May, etc.
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Fig. 14. Histograms of the transformed price for regime 1 (left) and 2 (right).
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Fig. 15. Histograms of the logarithm of load for regime 1 (left) and 2 (right).
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Fig. 16. Transformed price vs. residual load in regime 1 (light grey) and 2 (dark grey).

Table 6
Average marginal effect for each regime.

Regime 1 Regime 2
Mean S.D. C.V. Mean S.D. C.V.
i - 0.77 0.73 0.94 - 1.0 0.79 0.79
SPriCe (& /Mwh)/(GW))
oWind
i - 0.73 0.68 0.94 — 0.96 0.76 0.79
OPTICC. (&/MWh)/(GW))
dSolar
i 0.93 0.84 0.90 1.18 0.92 0.78
OPrICe (e/MWh)/(GW))
dLoad

expected that night hours are mainly during the low-price regime (1),
for all types of day and seasons. The morning peak hours (8-10 a.m.)
are more associated to high prices (regime 2), but only for working
days. Evening peak hours (6-8 p.m.) are associated with high prices for
all types of days (but less during week-ends), and particularly in au-
tumn (Fig. 13).

During working days, the middle of the day is less associated with a
specific regime, except during spring in which prices are relatively
lower. Indeed, although the type of day seems to be the main driver for

the level of prices, the frequency of occurrence of regime 1 differs a lot
among months, reaching 88.7% at 1-2 p.m. in March while it is of only
41.7% in November. This confirms the fact that the model is indeed
able to take the seasonality into account, while staying non-determi-
nistic and hence more flexible.

6.2.3. Comparison of price and load regimes

We can also visualise the regimes thanks to 2D plots such as figure
??: (transformed) price vs. (logarithm of) load. On this graph the two
regimes are easily identifiable. Also, this partly confirms what we saw
previously in Fig. 10, i.e. that price regimes are highly correlated with
load regimes. When looking at the histograms of the transformed price
for each regime (Fig. 14), we find that the two modes correspond to the
previously identified ones in Fig. 7.

However, we can see from the Price-Load graph that there exists a
region for which the demand is high, while the price remains low.
This is confirmed by taking a look at the histograms of load for each
regime (Fig. 15): during regime 1 there is a (relatively small) pro-
portion of “high” demand, whereas only a high-demand mode is
present in regime 2.

Finally, if we plot the transformed price versus the residual demand
(Fig. 16), this region disappears, and the relationship between the
transformed price and the residual load appears to be rather linear
within each regime, hence comforting the choice of the transformation
and of the residual demand as covariate.

6.3. Effect on prices

6.3.1. Average marginal effects

Interpreting the coefficients can be difficult, since the price has been
transformed and because we use wind and solar penetration indices as
well as residual load. In particular, the coefficients associated with wind
and solar productions are positive, which would mean at first look that
they increase the price. However, when taking into account the effect of
RES through the residual load coefficient we should find a negative
effect. Hence, it is interesting to derive an expression for the average
marginal effects (slopes), that would tell how much the decrease in
price is when RES production and load increase. We do not compute
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elasticities, because they would be very high when prices approach
zero, and would change sign whenever the price does. For clarity rea-
sons, we put in Appendix C the computations and the formal expres-
sions of the average marginal effects (Eqs. (26)—(28)), while we show
the results here (Table 6)°.

As expected, we find negative average marginal effects for RES gen-
eration, and a positive one for load, for each time step. Then on average, an
increase of 1 GW of wind will decrease the price in regime 1 (resp. 2) by
0.77€/MWh (resp. 1€/MW h). The influence of solar is slightly weaker, as
an extra gigawatt hour lowers the price of 0.73€/MWh in period 1, and
0.96€/MWh in regime 2. On the contrary, if the demand increases by 1 GW
in regime 1 (resp. 2), the price increases on average by 0.93€/MWh (resp.
1.18€/MWh). Moreover, we performed Welch t-tests on the obtained
coefficients to test whether their means are significantly different from one
another (from a regime to another and for each variable within each re-
gime), which seems to be the case.

Even though we cannot rigorously conclude about the statistical
significance of the average marginal effects, many elements are con-
sistent with the fact the effect is negative. Indeed, the time series
computed from Egs. (26)-(27)) are fully negative, and the estimated
coefficients of the model are indeed statistically significant. Further-
more, we estimated a model using RES productions in level instead of
their relative shares, which produced statistically significant negative
marginal effects on the transformed price'°.

This analysis confirms the existence of different merit-order effects in
high-price and low-price regimes. However, these slopes have very high
coefficients of variation, which means that inside each regime the marginal
effect can vary a lot. Nevertheless, these high variations are partly due to
the reverse transformation that is needed to compute those slopes, and the
estimated coefficients (3) are on the contrary very well determined, with
rather low standard deviations. It is thus important to remember that these
marginal effects are not equivalent to the model, which considers a non-
linear transformation of the price, but only illustrate it in a linear frame-
work. Additionally, when trying to estimate the MS model for the non-
transformed price, we fail to disentangle the two regimes, which confirms
the usefulness of the price transformation. Yet, the existence of different
marginal effects for high and low prices confirms that the inverse supply
curves are on average convex, as explained in the introduction. Similarly,
the volatility was found to be higher in regime 2 than in regime 1, which is
consistent with this hypothesis.

6.3.2. Non-marginal effects

Although the average marginal effects are of huge interest, they
are only valid inside each regime, i.e. when there is no switching.
Indeed, when there is a regime change, marginal effects are not
defined since the coefficients change. In particular, the predicted
change of the transformed price conditionally on the previous
period is:

Wind

E [APrice*IS,_; = i]= p; [,Bfi)A(—) + 5§i>A(S°l“’

Load

Solar
) + A(ﬁz Load)

@
+ B;” ARLoad
Load ) Ay o ]

Wind
Load

+p, [Aﬁo +a(s
+ A(ﬁ3RLoad)]

(15)

We recognise in this expression a weighted average of a regime-i
term and a regime-j switching term. The first term is the equivalent
of the marginal effect, which is computed for an infinitesimal
change of the covariates. This cannot be done with the second term,

© The standard deviations are computed directly from the time series generated by Egs.
(26)-(28).

10 Unfortunately, this model could not converge when using time-varying prob-
abilities, which is why we did not use it.
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Table 7
Odds ratios of the logit model for the transition probabilities.

Variable 1) 2

e%0 3.033463 0.06313241
a1/100 1.054493 1.072197
¢®2/100 1.045657 1.014949

because of the switching coefficients. To have an idea of the im-
portance of the switching term, the mean price in regime 1 is 23.5€/
MWh, while it is 42.6€/MWh in regime 2, i.e. approximately the
first and third quartiles Q1 and Q3.

6.4. Impact on the regimes

6.4.1. Odds ratios

Also of interest is the interpretation of the coefficients of the time-
varying probabilities. We have already analysed the effect of the RES pe-
netration indices on the probabilities through the sign of the coefficients,
but we would also like to assess the impact more quantitatively. The first
and natural idea is to look at odds ratios (e*), which would tell how the
odds of switching or staying in a regime vary with the shares of renewable
production. This is given in Table 7 below:

From this table we can see for example that an increase of one per-
centage point of the relative share of wind energy output would increase the
odds of staying in regime 1 by 5.4% while increasing the odds of switching
from regime 2 to regime 1 by 7.2%. Similarly, an increase of one percentage
point of the relative share of solar production would increase the odds of
staying in regime 1 by 4.6% while increasing the odds of switching from
regime 2 to regime 1 by 1.5%. These odds ratios show again that solar
generation has a smaller impact than wind generation, especially when it
comes to switching from high to low prices.

6.4.2. Impacts on regime durations

In addition, we would like to refer to more understandable variables
than probabilities of transition, e.g. the expected duration of each re-
gime E7, or the stationary distribution 7, as defined at the end of
Section 5. We have presented closed-form expressions for these vari-
ables in the homogeneous case, that are no longer valid in the in-
homogeneous one. However, deriving closed-form expressions for
marginal effects on these variables in the inhomogeneous case can give
an idea of the magnitude of the impact, even though it is not mathe-
matically rigorous. Since the expression of the stationary distribution
involves both a® coefficients, we will focus on the expected durations
only. Also, we will only derive the impact of RES production (similar
expressions can be derived for the load). We show in Appendix C the
following results:

o7 — 1) 0(EDn — 1)

Ea—-1 ), 9 . 9% Gw-l En-1 ), —af?
oWind (Load) oWind (Load)
~ —12%. GW! (16)

0(Eg — 1) 0(En — 1)

A A ) A B "
Eg — 1 ~ ocz(l ~ 7.7%. GW™! Er— 1 ~ —0(2< i
dSolar (Load) dSolar (Load)

~ —2.6%. GW! a7
(0] (O]
Hence, -1 and -2 can be interpreted as the (absolute values of
(Load) (Load)

the) semi-elasticities of [E7; — 1 with respect to wind and solar produc-
tions, respectively. The fact that Et — 1 is considered instead of simply
[Ez is due to the mathematical derivation of the expressions, but it also
reminds us that the expected duration of a regime cannot be lower than
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1, as long as it exists (it can nevertheless be very rare, which corre-
sponds to a marginal stationary distribution close to zero).
Furthermore, as [E7 is the expected duration of a regime conditionally
on being in this regime, one could interpret E7 — 1 as the mean “re-
maining time” in the regime, as the current period is taken into account
in the definition of Ez.

On average, when there is an additional GW of wind (resp. solar),
E7 — 1 increases by 9.2% (resp. 7.7%), while E7, — 1 decreases by 12%
(resp. 2.6%). As a reminder, the computed mean expected durations
where Ef = 12.6h and En = 8.04h. The computed semi-elasticities are
quite high (in absolute value), and it must be remembered that they are
only approximate mean values. However, this confirms that RES gen-
eration not only affect electricity prices marginally, but also more
globally, through the expected duration of each regime, but also their
frequency (not derived here).

In the long run, with very high shares of renewable production, these
estimates have no reason to stay valid. In particular, the price structure is
expected to change, with on average lower prices and less episodes of high
prices. With time, regime 2 as defined here is likely to shrink or disappear,
while regime 1 will become more and more predominant. In fact, recall that
the regimes have more or less been “predefined”, as we chose the mean
price as location parameter for the inverse hyperbolic sine transformation.
Hence, as the mean is expected to decrease as well, a new transformation
would have to be defined at some point. One could also think of including a
dynamic modelling of the mean itself, but this would most certainly prove
very difficult to achieve.

7. Conclusions and policy implications

We have assessed the impact of wind and photovoltaic productions on
electricity prices, taking into account the intermittency of these power
generating units. For this purpose, we developed a two-state Markov
switching model that we estimated using data from the German market. We
exhibited two regimes, of “low” (1) and a “high” (2) prices, which present
intra and inter-regime temporal correlation. Within each regime, the mar-
ginal impact of RES production is shown to be negative, and significantly
different from a regime to another. These results are in line with standard
electricity markets theory: the higher the prices, the higher the merit-order
effect, and the higher the volatility as well. This is due to the fact that
(inverse) supply curves are on average convex, as peak power plants have a
relatively high marginal cost but usually provide little capacity compared to
base power plants. Also, while marginal effects are only valid inside each
regime (i.e. when there is no switching), we show that is also a non-mar-
ginal switching effect, which is influenced by renewable generation through
their impact on the transition probabilities. Indeed RES production, and
especially the wind one, leads to more frequent and longer low-price epi-
sodes. As a consequence, although the regimes are partly deterministic (due
to the strong seasonality of demand), there are many exceptions, i.e. epi-
sodes of low prices with high demand. From the estimation of the transition
probabilities, we derived odds ratios as well as approximations of semi-
elasticities for the expected remaining duration of each regime. These values
confirm and help quantify the overall impact of RES production on the
structure of prices.

Although we have only considered the effect of RES generation on
electricity prices, there is necessarily an impact on the other units of
production and on cross-border flows. Hence, we can also expect to
have a differentiated effect on the conventional units, depending on the
merit-order and on which plant is marginal. However, a more thorough
analysis would be needed to numerically evaluate this impact. For

Appendix A. Marginal shock on supply or demand: theory
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example, using a different methodology, Graf and Marcantonini (2016)
used panel data in Italy to show that RES generation effectively reduces
CO, emissions while increasing the average plant emission factor.
Furthermore, although we have only shown that the volatility is higher
during the high-price regime, intermittent RES production might in-
fluence it as well. This could be done for example using MS-GARCH
modelling.

Finally, the policy implications of these results are diverse, but the
first related issues are security of supply and support schemes for re-
newables. Indeed, since we expect RES production to decrease prices on
average, we might also expect fewer episodes of very high prices.
Unfortunately, these are essential to the profitability of peak power
plants, who in turn suffer from “missing money”. This well known
“failure” of the energy-only market has led several countries to adopt
capacity remuneration mechanisms (CRMs), such as capacity payments,
capacity obligations, or strategic reserves.

Yet this issue concerns other production facilities as well. In
particular, renewables are expected to become competitive on en-
ergy markets (at least on the retail market, which is already the case
today in some places). However competitiveness might not ensure
profitability on the wholesale market, if prices become too low.
Indeed, it might then be necessary to keep subsidising RES for
longer than expected, while some conventional power plants could
have to be subsidised as well, for example through CRMs,'" if they
are valuable to the system as secure capacity. Indeed, it is often
considered that security of supply is a public good, which can then
be subsidised if it is not produced in sufficient quantity by the
market (market failure), for example if prices are too low, or high
enough on average but with very few occurrences of very high
prices, i.e. with a lot of uncertainty. In the long run, electricity
markets and support mechanisms would have to be redesigned to
take into account all these specificities. Hopefully, dynamic retail
pricing and electricity storage might help gain overall efficiency,
but it is still uncertain whether they will be available soon and
deliver their promises or not. In any case, it is necessary to start
addressing the problem by thinking about future market design. In
this context, this paper contributes to understanding the market
impact of load and renewable production, by highlighting the non-
linear relationship between electricity prices and these particular
determinants. Consequently, policy makers will have to take into
account these increasing interactions when designing future elec-
tricity markets.
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Let us denote D: p — D(p) (with (D’ < 0) and S: p — S(p) (with S’ > 0) the demand and supply functions for a certain time step, and let us derive

11 Note that CRMs are not necessarily subsidies, and that other means of subsidies could be used in the present case.
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the expression of the marginal effect on price for an infinitesimal change in supply dRES or demand dLoad. At the equilibrium, price and quantity are
jointly determined by equating supply and demand: Q = D(p) = S(p). Suppose that there is a change in supply so that the equilibrium quantity
writes Q = S(p, s), and/or a change in demand so that Q = D(p, d). Hence, as Q = D(p, d) = S(p, s), when s and d change, p does too so that the
equation continues to hold. We can then write the price as function of s and d: p = p(s, d); and the equilibrium equation becomes:
D(p(s, d), d) = S(p(s, d), s). Differentiating then yields:

a—D(a—pds + a—Pdd) + a—Ddd = a—S(a—pds + 5—pdd) + a—Sds
dp \ ds ad ad dp \ s ad ds (18)

For an additive change in supply only we simply have S(p, s) = S(p) + s and D(p, d) = D(p), so that:

oD _ 3S3p
dp 6s  dp ds (19)
Rearranging and replacing s by RES gives:
op _ 1
oRES ~ D _ 65
dp Op (20)
Finally, considering an additive change in demand only we have D(p, d) = D(p) + d and S(p, s) = S(p). Replacing d by Load then gives Eq. (1):
op _ -1 __ op >0
8Load 0D 43S ORES
dp dp 21
Table 8

Unit root and stationarity tests for the price time series.

Null Hypothesis: PRICE has a unit root

Exogenous: Constant

Lag Length: 28 (Automatic - based on SIC, maxlag = 43)

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic — 17.13532 0.0000
Test critical values: 1% level — 3.430552
5% level — 2.861513
10% level — 2.566797
*MacKinnon (1996) one-sided p-values.
Null Hypothesis: PRICE has a unit root
Exogenous: Constant
Bandwidth: 19 (Newey-West automatic) using Bartlett kernel
Adj. t-Stat Prob.*
Phillips-Perron test statistic — 24.45028 0.0000
Test critical values: 1% level — 3.430551
5% level — 2.861513
10% level — 2.566797
*MacKinnon (1996) one-sided p-values.
Null Hypothesis: PRICE is stationary
Exogenous: Constant, Linear Trend
Bandwidth: 86 (Newey-West automatic) using Bartlett kernel
LM-Stat.
Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.109461
Asymptotic critical values*: 1% level 0.216000
5% level 0.146000
10% level 0.119000

*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)
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Appendix B. Price statistics

Figs. 17-20.
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Fig. 17. Normal QQ-plot.
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Fig. 18. Box-plot.
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Fig. 19. “Complete” histogram.
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Fig. 20. Histogram around 0/MWh.

Appendix C. Mathematical expressions of the marginal effects
C.1. Marginal effects on price

We show here how to derive the expression for the marginal effects in each regime. For simplicity of presentation, we use the centred variable

X = Price — (Price) (where (-) is the temporal mean operator), we denote by W = vaz‘Zz and S = il;l:; the relative shares of wind and solar productions,

and we drop the index t. As the derivative of x ~ sinh™x is x — (x2 + 1)~/2, we have the following computations’?:

sinh™'X = 8, + B, W + B,S + B;RLoad 22)
dPrice
—— = f3,dW + $,dS + ;dRLoad
X1 : ’ (23)
-5 (dWind _ Wind dLoad) + B (dSolar __ Solar dLoad)
"W\ Load Load Load 2\ Load Load Load (24)

12 For simplification, we omit the error term and the regime indices: we consider in fact the expectation of X conditional on a regime and on the covariates.

275



C. Martin de Lagarde, F. Lantz Energy Policy 117 (2018) 263-277

+ B;(dLoad — dWind — dSolar) (25)

All other variables held constant, we obtain the following expressions for the marginal effects due to wind and solar productions and load:

dPrice =\/X2—+1( By _53)

oWind Load (26)
OPrice B

=JVX2+ 1| -
dSolar (Load 53) (27)
dPrice Wind Solar

=VX?+ 16— -
dLoad ('33 Ay Load? A Loadz) (28)

Finally, we compute these marginal effects for each time step and take temporal their mean and standard deviation, as shown in Table 6'°.
C.2. Marginal effects on expected duration

As stated in Section 6, the marginal effects computed below are not mathematically rigorous, since we use formulas for expected duration and
stationary distribution that are only valid for homogeneous Markov chains. Nevertheless we hope that it will give an idea of the magnitude of the
marginal effects. First, let us recall the aforementioned formulas:

1 1
Eg=— = and m=1-m=—22

Py 1-py P +Py 29

We inject the expression of the time-varying probabilities in the equation giving the expected durations, using W and S as before for the sake of
simplicity:

1 1
= - - - and p, = - - -
Po 1+ exp(—al’ — a®Ww — a{ls) Pz 1+ exp(al? + a®W + a{Ps) (30)
so that we have for the expected durations:
Eg =1+ exp(@{’ + a®PW + a{Vs) 81
= dEgf= ocl(l)exp(océl) + aOW + aVS)dw + ozz(l)exp(oco(l) + aOW + a{Vs)dsS (32)
=> 7(1([&'1 i) = ocl(l)dW + ocz(l)dS
Eg—1 (33)
—q® (dWind _ Wind dLoad) +a® (dSolar _ Solar dLoad)
! Load Load Load 2 \ Load Load Load (34)
and
En =1+ exp(—af? — a@W — al?S) (35)
>  dEp = —aPexp(—al® — aPW — aP$)dW — aPexp(—af — aPW — a{?S)dS (36)
€% -1 _ 04w - aPds
|ET2 -1 (37)
@ (dWind Wind dLoad ) @ (dSolar Solar dLoad )
= - — ) —
Load Load Load Load Load Load (38)
Finally, all other variables held constant, we can isolate the marginal effects and take their temporal mean:
A7 — 1) A(ER —1)
Eg—1 o Ep— 1 _ —a?
oWind (Load) oWind (Load)
(39)
d(Egm — 1) O(En — 1)
Eg—1 _ az(l) En -1 _ —0(2(2>
dSolar (Load) dSolar (Load)
(40)

13 The standard deviations are computed directly from the time series generated by Egs. (26)-(28).
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