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This paper discusses the problem of defining marginal costs when integer variables are present, in the context of
short-term power auctions. Most of the proposals for price computation existing in the literature are concerned
with short-term competitive equilibrium (generators should not be willing to change the dispatch assigned to
them by the auctioneer), which implies operational-cost recovery for all of the generators accepted in the
auction. However, this is in general not enough to choose between the different pricing schemes. We propose to
include an additional criterion in order to discriminate among different pricing schemes: prices have to be also
signals for generation expansion. Using this condition, we arrive to a single solution to the problem of defining
prices, where they are computed as the shadow prices of the balance equations in a linear version of the unit
commitment problem. Importantly, not every linearization of the unit commitment is valid; we develop the
conditions for this linear model to provide adequate investment signals. Compared to other proposals in the
literature, our results provide a strong motivation for the pricing scheme and a simple method for price

Keywords:
Electricity auctions
Investment signals
Side payments
Integer decisions
Marginal cost

computation.

1. Introduction

This paper is concerned with the study of mechanisms to coordinate
long- and short-term decisions in power markets. Since often a very
relevant part of this coordination happens through the price signal
provided by short-run marginal costs, we will revisit the problem with
the aim of showing that including start-up costs and other costs related
to integer decisions in the definition of short-run marginal costs plays a
relevant role in the coordination of system operation and investment.

Specifically, we will discuss the computation of marginal cost when
cost functions include binary variables (those with only two possible
values: 1 or 0). More precisely, we will focus on day-ahead electricity
markets. Generators willing to sell in a day-ahead market face binary
start-up and shut-down decisions, which are not yet fixed at the time of
bidding and have to be included in the decision-making process. The
existence of these binary variables makes cost functions non-convex,
which in turn causes the cost derivative to be ill-defined (see Section 2
for details), so the direct application of the standard perfect competi-

tion concept of "price equal to marginal cost" is not obvious for this
case. Therefore, when start-up variables are present additional criteria
have to be used to define price. The existing literature shows a range of
different alternatives to do so, each of them leading to different prices.
This paper will try to gain insight into the reasons why marginal costs
are not clearly defined, with the aim of contributing to the discussion
on the choice of the criteria to be used to calculate prices.

The problem of ill-defined prices is especially apparent when the
regulator has opted for a market design that is based on a complex
auction. The pure complex auction is essentially a traditional unit
commitment model, which is applied to clearing power markets
(Hobbs, 2001). Therefore, the auctioneer receives bids from generators
that include, not only their variable costs and their output capacities,
but also their start-up costs, minimum stable loads, ramp rates, and
other technical characteristics. The problem of the auctioneer becomes
thus a non-convex optimization, so price is not anymore the cost
derivative at the optimal solution point, and a number of different
proposals arise for price computation.
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Most of the solutions presented in the literature are derived from
the algorithms used to solve the mixed-integer optimization problem.
Basically, the processes used to compute the optimal solution are
translated into price-setting criteria. Since there are many alternative
ways to reach the optimal solution (the values of the production for
each plant), marginal costs may differ greatly between the different
approaches. This paper is aimed to adding some additional criteria to
help discriminating between these approaches. Kahn (1970) identified
two goals required from prices when fixed costs are involved: i)
ensuring efficient accounting-cost recovery, and ii) defining forward-
looking opportunity cost and incentives. Almost all of the solutions
proposed in the literature for the day-ahead pricing problem focus on
the first of them: making sure that all of the generators that are
accepted in the auction receive at least their operating costs, so they are
willing to produce. We will focus on the second one: providing
incentives for future decisions, both for consumers and for investment
in new generation plants (Vazquez, 2003). This will allow us to discard
some of the proposals already on the table, narrowing the range of
mechanisms to be considered.

The problem of investing in power plants can be split into several
separate topics. On the one hand, there is plenty of literature regarding
the adequacy issue —see for instance Vazquez et al. (2002) or Finon and
Pignon (2008)- which focus on how to make sure that there will be
enough installed capacity in the system to provide a reasonable level of
security of supply. This includes proposals such as capacity remunera-
tion mechanisms, the Value of Lost Load (VOLL) mechanism that was
used in the original England and Wales Pool, etc. Our numerical
example in Section 3.4 includes a representation of that, showing that
the problems associated with lost load are not necessary the same as
the ones studied in this paper. We will not address those problems in
this paper. Alternatively, we will concentrate on the problem of
technology choice, trying to understand how the choices are made to
decide which part of the installed capacity will be baseload generators,
and which part will be mid-merit, or peaking units. Those decisions are
mainly driven by the prices captured at the spot market, so different
ways of calculating short-run marginal costs may lead to different
technology mixes.

The problem of price computation is not restricted to complex
auctions. Many electricity markets have opted for a simple auction in
their market design. Under this scheme, bidders just submit to the
auctioneer several pairs of price and quantity for each of the hours in
the market horizon (typically, one day), and prices can be computed in
a clear and unequivocal way just by crossing the aggregated supply and
demand curves, for each hour independently. The auctioneer does not
have to consider any start-up cost nor binary decision variables when
computing prices, and the problem of concern to this paper is
apparently not present in simple auctions. However, in a simple
auction generators have to internalize into their bids all of the technical
characteristics that are not directly taken into account by the auction;
for instance, they have to bid above their variable cost in order to
incorporate their start-up cost in the price. When preparing such bids,
sellers would typically use an optimization model to, among other
things, determine how to split their start-up cost among the different
hours of the following day or days. And that problem will include start-
up decisions, so it will have binary variables, and ill-defined prices. The
price definition issue moves from the auctioneer's problem to the
bidder's problem, but it is still in place. We will concentrate hereafter in
the complex auction case, but the reasoning and conclusions that we
will elaborate are of application to the bidder’s problem in a simple
auction. Even in other less common designs for the day-ahead market,
such as clock auctions (Wilson, 1998), the issue of prices still holds,
either at the auctioneer's problem or at the bidder's one.

The increasing role of renewable energy tends to stress the
opportunity of this discussion, see for instance (de Sisternes et al.,
2015) for numerical simulations of the effects of different pricing rules.
On the one hand, more renewable energy requires a larger amount of
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start-ups and cycling from marginal generators, so the impact of non-
convexities on prices will tend to increase and the market will benefit
from a refined approach to its computation. On the other hand, we can
expect a shift in the investment in new merchant generators, moving
from the predominance of near-marginal technologies that we have
seen in the latter decades, which are more or less isolated from the
pricing problem (see Section 3.1 for details), to a larger share of base-
load renewable-based capacity, which bear a much larger impact of
using one pricing mechanism or another.

In this paper we will not address the discussion of whether the
regulator should adopt a complex or a simple auction, which we
assume that depends on the conditions at each market. Also, we will
restrict ourselves to a perfect competition situation, ignoring market
power, in order to concentrate on the pricing issues linked to non-
convexities.

The paper will first present the pricing problem in Section 2, using
some simple examples to illustrate why price may not be defined when
the only criterion considered is ensuring that generators agree with the
centralized dispatch, while reviewing in light of this description the
different proposals presented in the literature. Then, we will incorpo-
rate into the discussion the criterion of providing incentives for the
investment decisions of other generators (Section 3), identifying some
additional requirements for the prices. Section 4 will be devoted to
discuss the implications of the results obtained, while Section 5 will
sum up the conclusions.

2. Statement of the problem and literature review
2.1. A simple example with binary variables

Let us assume a single-hour problem, where demand is ¢ and there
are three generators i={i,, i,, i3}, with maximum output g"** and a cost
function that only involves a start-up cost cq; and a variable cost cv: for
each of the generators, being cq; < ca;,; and cv; < ¢v,,. This is a very
simple example, but it keeps the essential feature of including binary
variables, which are the source of the pricing problems under study.
The optimization of the centralized problem is rather easy in this case:
if demand is smaller than the capacity of the cheapest generator, then
only this one should produce; if demand is higher than the maximum
output of the cheapest generator, but smaller than the aggregate
capacity of the first and second generators, then the first one should
produce at its maximum and the rest of the demand should be provided
by the second unit; if demand is larger than the capacity of the first two
generators, then both of them should operate at their maximum and
the rest of the demand should be produced by the third generator. It
results in the curve, presented in Fig. 1, of total production cost as
generation increases. The optimal solution is the point where genera-
tion is equal to demand.

In a perfect competition context, each generator decides its output
by maximizing its income from market sales minus its operating cost. If

cost (€)

production (MW)

Fig. 1. Production costs as a function of production.
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Fig. 2. Production decisions for price equal to the variable cost of the marginal unit
(plant by plant view).

the prices were calculated from the direct application of the results of
the convex case, see for instance (Bohn et al., 1984), then the price
would be equal to the pure marginal cost: in this example, to the
variable cost of unit i,. The decision process of market players for this
price is represented in Fig. 2, where the solid lines show their operating
costs and the dotted ones represent their market income.

For generator i, operating margin is maximized when producing at
its full capacity, since the price is higher than its marginal cost, and the
higher the production the higher the net income. For generators i, and
i5, on the contrary, the best decision is not to produce at all, since the
price is not enough to compensate for their full operating costs. Total
generation under this price is lower than demand, and different from
the centralized solution. Since the price is calculated as the pure
marginal cost, any cost that is related to the discrete decisions is not
incorporated into the prices, so the marginal unit does not recover its
full operating costs, and therefore it is not willing to produce. This price
does not attract enough generation to fulfill demand. Therefore, we can
conclude that this price does not support the global optimum to be a
competitive equilibrium.’

The same result could have been obtained by noticing that the net
profits associated with any plant can be written as R = zg — C, where C
represents the production costs, g is the plant output and 7z is the
market price. Thus, the net profits can be recast as C = — R + zg, so
they constitute a set of straight lines with slope 7 and intercept —R. The
individual decision of any certain market player, given the market
price, is to choose the straight line with a slope equal to the market
price and with the lowest possible intercept (i.e., maximum possible
operating profit), taking into account that only the lines with at least
one point in common with the cost curve are feasible. Therefore, a
straight line with slope equal to the market price and tangent to the
cost curve represents the optimal response of the system generation
portfolio to a certain price. The optimal production is given by the
tangent point. In Fig. 3 this reasoning is applied to the previous case,
market price equal to the pure marginal cost, with the dotted line being
the lowest line which is tangent to the cost curve and has the same
slope than the variable costs of generator i,, and it yields the same
results as in Fig. 2.

An alternative candidate for the market price is the average cost of
the marginal plant, which should ensure that the price pays for all of
the operating costs of this generator, and therefore it will be willing to
come on line. This is represented in Fig. 4.

This price is in fact high enough to make generator i, willing to
produce. However, i, does not maximize its profits by operating at the
partial level determined by the global optimization, but rather by

! We understand that a certain generation dispatch is a competitive short-term
equilibrium under some market prices if, once the prices are known, generators are
not willing to change their productions.
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Fig. 3. Production decisions for price equal to the variable cost of the marginal unit
(aggregated view).

cost (€)

/ prdduction (MW)

Fig. 4. Production decisions for price equal to the average cost of the marginal unit.

producing at its full capacity. Furthermore, the price makes plant i,
willing to produce at its maximum too. Then, the total generation
induced by this price is much larger than demand. The equilibrium
implied is not the optimal dispatch either.

A possible compromise solution is represented in Fig. 5. In this
case, the market price is defined as the average cost at its maximum
output of the marginal plant.

Under this solution, all the units that were not dispatched in the
optimal solution are not willing to produce, and no infra-marginal unit
has incentives to stop producing. This means that, for all units except
the marginal one, this price supports the global optimum as an
equilibrium. However, the optimal response of the marginal plant is
either to stop producing or to produce at its maximum output. Any
generation level different than its maximum production would reduce
the income of unit i,, making it lower than its operating costs, and thus
leading the plant to stop producing. The average-cost-at-maximum-
output price does not create incentives for generator i, to produce at
the level required to fulfill demand as in the optimal dispatch.

This example illustrates that often there is no price that supports
the short-term competitive equilibrium in the market. Any price higher
than the average-cost-at-maximum-output price will result in a total
generation that is above demand; any price lower than that one will
yield less generation than demand; and, for the average-cost-at-
maximum-output price, generation can be either lower or higher than
required, but not equal to demand.

2.2. Duality gap

The lack of short-term equilibrium is not restricted to this example,
it is rather a general result of the non-convexities of the cost functions.



C. Vazquez et al.
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Fig. 5. Production decisions for price equal to the average cost at maximum output of
the marginal unit.

One could describe the market as a process where a central problem
(the day-ahead auction) sets the price and each producer resolves his
own subproblem to determine his production. In other words, the
centralized unit commitment problem is solved through a decomposi-
tion technique, allowing for a distributed optimization (each generator
decides his own production) and leaving the price as a control variable
that creates economic signals to ensure that the generation-demand
balance is maintained. This kind of decomposition, where a certain
constraint is replaced by a price signal, is known as Lagrangian
relaxation, see for instance Minoux and Vajda (1986).

A common phenomenon when applying Lagrangian relaxation to
non-convex problems is the existence of a duality gap. This is a
difference between the solution of the primal problem (in our case,
the centralized optimization) and the dual problem (in our case, the
market), which is zero when the problem is convex but not in the
presence of non-convexities. More precisely, in the areas where the
problem is not convex, small changes in the price signal leads to large
leaps in the solution of the dual problem, making it impossible to
satisfy the relaxed equation (the supply-demand balance, in our case).
As a result, the solution of the primal problem, which satisfy exactly all
of the constraints, differs from the solution of the dual problem.

This is the case with the day-ahead electricity market. There is no
price that creates incentives for the generators to produce the same
amounts that were dispatched in the centralized model: in the market,
they will produce either at their full capacity or zero. Thus, the solution
of the market is different from the global optimum. In the presence of
non-convexities, there is no price that supports a short-term compe-
titive equilibrium.

It is often mentioned, e.g. (Ferreira, 1993), that the duality gap
decreases with the size of the problem, being negligible for large-scale
optimizations. This is true, in relative terms, when total supply cost is
considered: the value of the duality gap for the marginal unit remains
unchanged but, as long as the system is larger, the number of
generators at full load, with no duality gap, increases and, when
compared with total cost, the value of the total duality gap is relatively
smaller. However, it does not hold for the revenue streams of
generators in a single-price market: the duality gap for the marginal
generator remains unchanged, and it is translated into an error in the
price computation, which is in turn paid to all producers. In a market,
the problems linked to duality gap do not reduce with the size of the
problem.

2.3. Side payments

If there is no price that supports the competitive equilibrium, then
the only option for identifying a reasonable price-setting mechanism is
to move away from the single-price scheme and try to find an
alternative approach to deal with price computation. Most of the
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proposals in the literature assume, with more or less emphasis, that
generators receive their short-term income from two sources: on the
one hand, an energy price, paid uniformly to all of the generators that
are producing at a certain hour, and calculated as some form of
marginal cost (details vary depending on the solution); on the other
hand, a side-payment, different for each generator, and often restricted
only to a few of them, or even only to the marginal one.

Making use of side payments, the average-cost-at-maximum-output
price solution described above could be transformed into a short-term
competitive equilibrium solution just by giving to the marginal unit an
extra payment. This additional income would be equal to the portion of
its fixed costs corresponding to the capacity that is actually not produ-
cing. Being &, the side payment received by producer i, in the example

of Section 2.1, §; = ca; l—g,‘% fori= i, and & =0 fori= i,i,.
i

Note that §, is not fixed, but changes with g,. For this new pricing scheme
with side payments, the income received by generator i, is equal to its
production costs regardless of its output, so the generator is indifferent to
which is its production, being willing to sell any amount of generation,
including the mid-range level that is required to meet demand in the
most efficient way. Therefore, these set of prices are compatible with the
competitive equilibrium.

Nevertheless, one could construct an equivalent argument using the
variable-cost prices described in Section 2.1. In this case, if the
marginal generator received as side payments its full fixed costs, it
will be willing to produce at any output level, including the one that is
required to meet demand. Additional side payments would be required
to make sure that the rest of the infra-marginal generators receive their
fixed cost and are willing to produce. In the example of Section 2.1,
8, = ca;fori= i, and & = max{0,(cq; — (x — cv)-g)}fori = i, i;. This
combination of price and side payments would also allow for a
competitive equilibrium.

Furthermore, even the average-cost price solution could support a
competitive equilibrium with the correct side payments. If the non-
dispatched generators received negative side payments that discourage
them from producing, the incentives for all of the players would be
compatible with the optimal dispatch. In the example in Section 2.1,
§=0fori=i; and §; = (cvyg™" + ca; — wg")fori= iy i,. Side pay-
ments for generator i, are in principle null, but could become negative
if its production were increased.

Taking this argument to the extreme, if the price were zero, one
could devise side payments equal to the full production costs of each of
the generators accepted in the auction, and all of them would be
willing, under this pricing scheme, to produce the generation required
to meet demand, so the overall pricing scheme will support the
competitive equilibrium too. This is often known as pay-as-bid auction.

For any possible market price there is a set of side payments for the
different generators that makes it compatible with a competitive
equilibrium. In effect, under any given price z, it only takes one
condition for each generator to make sure that the result of the
centralized unit commitment is a competitive equilibrium.

max

g — cveg —ca;+ 8 >0 ifg, =g""
7g —cyg —ca;+ 8, =0 if 0<g, < g™
g —cvg —ca;+6 <0 ifg =0 1)

Being the costs parameters, the productions and the price known
when calculating the side payment, there is one side payment for each
generator, which can be freely adjusted to satisfy the conditions in (1).
This is a system of equations with the same number of equations than
unknowns. It can be solved and side payments that comply with the
conditions in (1) can be computed. Thus, a set of side payments exists
that makes any price support a competitive equilibrium for the cost-
minimizing productions.

A reasoning based just on the short-term competitive equilibrium
criterion yields mixed results. Without side payments there were no
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price that allowed for the productions of the unit commitment to be a
competitive equilibrium, but when side payments are considered then
any price fulfills the competitive equilibrium condition and apparently
any pricing computation would be correct. Although it helps in
achieving an equilibrium, it provides no information regarding which
is the most suitable mechanism to compute prices. In Section 3 we
would incorporate an additional criterion, with the aim of discriminat-
ing among the different solutions.

2.4. Related literature

A relevant piece of related work is (O’Neill et al., 2005), which
proposes solutions that are similar to the scheme presented previously
of a variable-cost-based price plus a side payment. The motivation of
their work is to address the fact that no linear price supports an
equilibrium in presence of non-convexities. They use the format of
their mixed-integer optimization algorithm, along the lines of (Gomory
and Baumol, 1960), to define a pure marginal price -which by
construction is the variable cost of the marginal unit- and a set of side
payments, derived from the conditions used by the algorithm to attain
integrality. Those side payments support the equilibrium, ensuring that
all dispatched generators recover their full operating costs. Other
proposal relying on the same motivation, i.e. imposing conditions to
ensure operatinal-cost recovery, is (Bjorndal and Jornsten, 2008),
where Benders cuts are used to define more stable prices.

On the other hand, (Hogan and Ring, 2003) propose to compute
prices with the objective of minimizing side payments (uplifts, in their
naming). The main motivation for this proposal is an auction-design
argument: since pay-as-bid auctions are not desirable for power
markets, because of their bad bidding incentives, the price adopted
should be as close as possible to the uniform-price auction solution,
and that implies minimizing uplifts. Gribik et al. (2007) shows that this
uplift minimization is equivalent to computing prices as the dual
variables of a Lagrangian relaxation. A recent analysis of the properties
of this proposal can be found in Schiro et al. (2015). In the context of
the examples of Section 2.1, this result is similar to the scheme of an
average-cost-at-maximum-output price plus a side payment.
Additionally, both Hogan and Ring (2003) and Gribik et al. (2007)
discuss an alternative approach motivated by actual operations at the
New York ISO, which they name dispatchable model, where binary
variables are relaxed in order to allow for the costs associated with
them to be reflected in marginal prices. While Hogan (2014) considers
this solution as a workable approximation of the Lagrangian relaxation
results, (Gribik et al., 2007) show some differences for a small example.

Several alternative proposals argue along the lines of uplift mini-
mization, or some similar kind of optimization that explicitly considers
side payments into their objective function. Alternative formulations of
this kind can be found in Galiana et al. (2003), Bouffard and Galiana
(2005), Toczylowski and Zoltowska (2009), Van Vyve (2011),
Andrianesis et al. (2013), and Liberopoulos and Andrianesis (2016).
Some of them add additional criteria, such as zero-sum side payments,
that possibly move them away from the Lagrangian relaxation results.
For instance, (Van Vyve, 2011) assumes that only already committed
units are relevant for price calculation, which may distort prices at
some cases. All of these proposals use different specifications and
algorithms but they all share the characteristic of explicitly manipulat-
ing side payments under a general goal of reducing them.

Finally, there are a number of works that face the pricing issue from
a numerical simulation perspective. de Sisternes et al. (2015) compare
a single-price scenario (no side payments) with a centralized unit
commitment with side payments. They find out that total costs for
consumers in the single-price scenario are higher than in the centra-
lized one. In the context of Section 2.1, this can be interpreted as
average-cost-at-maximum-output price being lower than average-cost
price: when there are no side payments, producers often calculate their
bids as average costs at their estimated production point, while the
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centralized auctioneer in de Sisternes et al. (2015) calculates them as
average costs at maximum output. Herrero et al. (2015) simulate
investment decisions for several pricing models. They conclude that
none of the pricing mechanisms under their scrutiny is able to induce
optimal investment decisions at their simulations. However, since their
approach is basically numerical, it is not easy to explain or further
analyze which are the reasons for these results.

Summing up, the vast majority of the proposals in the literature are
concerned with ensuring that generators are willing to produce
according to the instructions of the auctioneer. There are several
alternatives that are well suited to this goal, but the arguments
presented to choose any of them among the others are axiomatic
solutions to address the cost-recovery problem. Our paper focus on
including additional criteria for this decision, stressing the role of
prices as long-term signals.

3. Investment in new generation facilities
3.1. Solution concept

Looking into the example in Section 2.1, we can observe that the
income received by the marginal generator does not change across the
different pricing methods. Both the proposal in O'Neil et al., (2005) and
the convex hull pricing in Gribik et al. (2007) provide the same total
remuneration for the marginal plant, even though the prices and side
payments of both methods are different. In fact, this is necessary if the
pricing scheme has to be a competitive equilibrium: if the remunera-
tion for the marginal generator were lower than its operation costs,
then the generator would decide to stop producing, deviating from the
equilibrium production; if its remuneration were higher, then the
generator would decide to produce at its maximum output, which is not
the equilibrium production either. Thus, all of the pricing schemes are
equivalent from the point of view of the marginal unit, and the main
difference among them is how much they pay to the infra-marginal
units (i.e., those generators with bids that are cheaper than the
marginal plant, which are producing at their maximum output).

Presented in these terms, the pricing problem is reduced to
determining which part of its operational costs is paid to the marginal
generator in the form of price, which all other generators receive, and
which part of that cost is paid to it in the form of side payments, which
are discriminatory and typically most of the infra-marginal producers
will not receive. Thinking just in terms of minimizing consumer's
payments at the short-term market, one could argue that the larger the
side payment, the lower the price and the lower the costs for
consumers, but this reasoning would not be correct, since it ignores
the impact of price on investment decisions, and hence on future costs.
The standard line of argumentation, see for instance (Caramanis,
1982), to explain why infra-marginal generators should receive a price
that is higher than its bids and higher than its operational costs is that
the net income captured by the generators in the market is required to
remunerate for their investment costs. In other words, the difference
between the price and the operational costs of the producers represents
the market income for each plant, which is in general required to pay
for the capital costs of constructing the facility. If prices were close to
the actual operational costs for all of the generators, then no plants
with high investment costs -typically base-load equipment- could be
financed and new capacity additions would be based on low-invest-
ment-cost generators, such as peaking plants. If prices were substan-
tially higher than operation costs, then new additions would be
predominantly base-load generators.

The need to induce the correct investment decisions in generation
equipment is thus an additional criterion that can be used to choose
among different pricing schemes (Vazquez, 2003). We will reformulate
the question of which is the pricing mechanism that should be used as
which is the pricing mechanism that provides better long-term signals.
For this analysis, we will use the approach of comparing the results of
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the market with the results of an ideal centralized optimization with
perfect information, see for instance Bohn et al. (1984) or Caramanis
(1982). We will describe the ideal aggregated investment-plus-opera-
tion optimization problem, and then we will extrapolate to the market
environment. The Appendix provides further details on the formal
derivation of these results.

3.2. Investment-plus-operation model

The starting point for this kind of analysis (see for instance
Caramanis (1982) or Joskow and Schmalensee (1983)) is the ideal
optimization model. A perfectly-adapted generation mix is defined
to this end, which consists in the set of production facilities that
provides least-cost supply, computed as if there were no existing
generation plants; i.e., generation capacity in the system is planned
from scratch, ignoring the present situation of the generation
equipment. If the installed capacity of any certain technology were
lower than its capacity at the ideal model, then that technology
would receive more income from the spot prices than required to
pay for its capital costs. Therefore, it would become very attractive
for investors and more capacity of this kind would be constructed.
Reversely, if actual capacity for some technology were higher than
the ideal capacity, it would not recover its full costs. Thus, no more
capacity would be built of this technology, until demand grows and
the capacity of this kind results to be adapted again. Through this
mechanism, prices act as long-term signals for generation invest-
ment.

In order to compute the ideal mix, the optimization problem
assumes that no size constraints apply to the generation facilities;
i.e., the model decides to build plants of any size, as long as they are
required to attain the least-cost solution. It does not mean that the
centralized planning algorithm is unaware of the potential size
limits for some equipment, or of the fact that many plants are
already installed, with their investment costs sunk, but means that
the optimization model is not computing a realistic expansion plan.
Instead, the centralized algorithm is defining a reference ideal mix
that the planner would like to have, and prices are constructed to
provide incentives for the players to approach to this ideal mix. In
this context, competitive market means that generators are paid
according to their value to the system on an hour-by-hour basis.
For instance, a certain plant that becomes un-adequate when a new
technology appears will not be paid its full investment costs by the
market, even if it was optimal when it was built. Equivalently, a
production unit that has to build more megawatts than optimal due
to the lumpy nature of its capacity additions will receive less
remuneration than some other more flexible technology that is
better adapted in size to the demand.

The assumption of no size limits, which has a minor impact for a
convex model, becomes of capital importance when the unit commit-
ment case is considered. We will assume that, for the perfectly-adapted
generation mix, there is enough flexibility to build production equip-
ment of any size. Again, not because it is realistic, but because it is the
aspirational scenario that is being promoted. We will further discuss
the implications of this assumption in Section 4 below.

Let us consider the following simplified description of the global
optimization problem:
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where CI, and x; are the parameters that describe the investment
decisions, being CI; the investment cost of plant i ($/MW) and x; its
installed capacity (MW). ¢, c¢b, and ca; are the operational cost
parameters of plant i: respectively, variable cost ($/MWh), per-MW
no-load cost ($/h/MW) and per-MW start-up cost ($/start/MW). We
assume shut-down cost is zero. Note that cb; and ca; are expressed in
per-unit terms in order to account for their evolution when capacity
changes. g, u,;, v, and w,; describe the operation of plant ; at time ¢:
they are, respectively, its production (MW), commitment (1 if the plant
is on-line, O if it is not), start-up (1 if the plant is starting-up at time 7, 0
if it is not) and close-down (1 if the plant is closing-down at time ¢z, 0 if
it is not) decisions. Finally, gl."”" and g are the per-MW production
limits of plant i (MW/MW), and d, is system demand at time ¢. gl.’"i" and
g™ are also expressed in per-unit terms so they can adapt to capacity
changes. The third constraint represents a continuity constraint: if the
generator is on-line at time ¢, then either it was on-line at times — 1 or
it is started-up at time 7; conversely, if it is not on-line at time 7, then
either it was off-line at time 7 — 1 or it is shut-down at time 7. Only the
u,; variables are explicitly forced to be binary, as the third equation
combined with the costly nature of v; ; lead v; ; and w; ; to have only 0 or 1
values without adding any additional constraint to the model. Some
other technical characteristics might be added to this model (ramp
rates, etc.), which do not change substantially the conclusions of this
simplified version.
Re-arranging terms, the previous problem can be expressed as
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Moreover, if x; can be as flexible as required, it is always possible
to substitute any generation plant by several smaller units. For
instance, consider that a certain marginal plant is producing at 60%
of its maximum capacity in one hour and at full capacity in the next
hour. It is always possible to replace it by two smaller plants of the
same technology, with installed capacities equal to 60% and 40% of
the capacity of the first generator, so one of them is producing at its
maximum in the first hour and both of them produce at full load in
the second one. This implies that problem (3) is equivalent to a
linear problem: as we are making x; arbitrarily flexible, the optimal
solution will only contain variables at their integer limits. This is
the definition of the integrality property, so the solution of the
linear relaxation is the same as the integer solution, (Minoux and
Vajda, 1986).
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In a perfectly-competitive market environment with a complex
auction, with the investment assumptions described above, the results
of problem (4) can be achieved by: i) clearing the market by solving the
optimization model described in (5); ii) adopting 2" as the price for
each hour #; and iii) allowing market players to freely decide by
themselves on their installed capacities x;. The Appendix provides a
more formal derivation for this result.
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where x;* is the actual set of generation plants existing in the system at
the moment of clearing the market.

Prices resulting from problem (5) provide incentives for the
producers to build the perfectly-adapted and completely-flexible gen-
eration mix that results from problem (4). In practice, real generators
will not be able to reach this ideal generation portfolio, but they will
have incentives to approach to it as much as they can. Any certain
technology that manages to have more flexible sizing options, so it can
come closer to the perfectly-adapted capacity mix, will have an
advantage in the market. Thus, even if the scalable-generators assump-
tion does not hold, the prices obtained using it are good incentives for
capacity expansion, leading the generation mix to be better suited to
demand.

Therefore, leveraging on the idea of flexible capacity additions, we
have moved from a unit commitment problem with binary variables to
a linear problem with a convex cost function. Start-up costs, which are
fixed in the model with binary variables and thus are not reflected in
prices, evolve in a continuous way in the linear model, which allows for
the computation of a marginal cost that reflects the costs related to
start-up variables and, in general, with any binary variables.

3.3. Implementation proposal

Therefore, we propose to implement the day-ahead market auction
as a three-steps procedure:

1. Solve the optimization problem (6) (the scalable-generators linear
problem), which is a particular linearization of the unit commitment
problem and was presented as problem (5) above, and obtain market

prices. p, = A,d"'"l‘, where p, is the market price in hour ¢ and the

super-index L refers to this linear problem.
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. Solve the optimization problem (7) (the unit commitment problem),
which is a standard unit commitment with binary variables, and
obtain the quantities that are assigned to each generator in each
hour, together with their production costs. ¢, = gm.UC;

C =Y, (cg, + chxu,; + cal-x,-*vtvl-)uc, where ¢, is the quantity as-
signed to generator i in hour ¢, C; is the production cost of generator
i, and the super-index -UC refers to this unit commitment problem.
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Table 1
Demand data.

Time ¢ tl t2 t3 t4 t5 t6 t7 t8

Demand d, (MW)
Willingness to pay ($/MWh)

1000 800 650 200 700 600 500 400
500

. * s
min Z (cig,; + cbx; uy; + cax;™y, ;)

8g.u,v,w f,i
s. t. Z 8= d, /lldgm
i
ut,ixi*gimm <g,;< “r,ixi*gl-max l,’f}"", A
Ui = Uy + Vii— Wi l[r);zlim/

u,; € {0, 1} @)

. Compute a side payment for one (or a few) near-marginal generators
as the difference between its total operational costs C; and its total
market revenue ) (54, ,)- The generators will only receive this side
payment when it is a positive value.

Typically a linear version of the unit commitment is obtained as an
initial solution for the discrete optimization model, so this process
should not imply a significant additional cost in terms of computational
effort. Probably, it will be substantially easier to compute than the
relaxation proposed in (Gribik et al., 2007).

It is relevant to note that not every linear problem that derives from
a unit commitment is suitable for computing the prices we are
describing. Throughout Section 3 we have developed an approach to
define this pricing model, which is quite restrictive, and which is based
on the idea of flexible additions of capacity. This means that when the
optimization results in a commitment variable that is, for instance, at
60%, we are assuming that there is a generator that is fully committed
with an installed capacity of 60% the capacity of the original generator.
And this new generator needs to have the same technical character-
istics as the previous larger one, all of them scaled down accordingly. A
generator committed at 60% requires to have 60% maximum output,
but also 60% minimum stable load, 60% ramp rate, 60% no-load cost,
etc. It is the entire generator, with all of its features, what we are scaling
up or down. Only if this notion of scalable generators is properly
modelled in the pricing algorithm, the resulting prices will display the
properties we are describing as optimal long-term investment signals.

Obviously, the formulation in problem (6) does fulfill this require-
ment. If additional constraints were added to the model, such as ramp
rates, or minimum on-line time, or others, one should be careful to
ensure that the new constraints are modelled consistently with scaling
up or down the size of the generator. For instance, one should make
sure that the modelling of ramp-rates works well if the installed
capacity is half the initial one.

Besides, under the process we are describing, it may happen that
some generators that are not dispatched in the 'quantities’ model (the
unit commitment problem) are dispatched in the 'prices' model (the
scalable-generators linear problem). Typically, a plant with low average
production cost but large in size, may be replaced in the 'quantities’
model by some smaller, although more expensive, generators. In our
view, this should not be a cause of concern: the smaller but expensive
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Table 2
Generation technologies data.
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Variable cost c; No-load cost ¢b; ($/h/  Start-up cost ca; ($/start/ Investment cost CI; ($/MW) Max generation (MW/MW) Min generation (MW/MW)
($/MWh) MwW) MW)
il 60 0 70 809 1 0.4
i2 20 0 60 1050 1 0.4
Table 5
Table 3 Dispatch and costs of the generation mix that is adapted to the "price equal to the
Dispatch and costs for the global solution. variable cost of the marginal unit" pricing rule.
Installed tl t2 t3 t4 t5 t6 t7 t8 Installed t1 t2 t3 t4 t5 t6 t7 t8
capacity capacity
MwW) (MW)
8.1 (MW) 300 300 300 150 O 200 100 O 0 g.; (MW) 500 500 500 350 200 400 300 200 200
S (MW) 500 500 500 500 200 500 500 500 400 & (MW) 300 300 300 300 O 300 300 300 200
i1 (MW) 300 0O 0 0 200 0O 0 0 v (MW) 500 O 0 0 0 0 0 0
V.2 (MW) 500 0 0 0 0O 0 0 0 Y12 (MW) 300 0 0 O 30 0 0 0
Operation/total 98,000/340,700 Operation/total 194,060/598560
cost il ($) cost il ($)
Operation/total 102,000/640,000 Operation/total 76,000/391,000
cost i2 ($) cost i2 ($)
plants will receive a side payment to cover for their fixed costs, the large Table 6

plant will have an incentive to be more flexible, while the infra-
marginal generators will receive a price that is based on the aspira-
tional expansion plan, where the size of the cheaper unit is better
adapted to demand. See further discussion in Section 4 below.

3.4. Illustrative example

An example might be useful to gain insight into the effects of prices
on the generation mix. Let us assume we have the following demand
(Table 1) and the following two generation technologies: i1 and i2
(Table 2). We will be using the names defined in problem (2).

For these data, the global optimum,; i.e., the results that minimize
total operation-plus-investment costs are presented in Table 3.

Note that there is a rationing of 200 MW in the first hour. This is
the optimal decision taking into account the willingness to pay defined
in our example. That is, we are defining that is optimal to ration in one
hour. The decision of building more capacity from technology i1 instead
of having 200 MW of rationing is related with the adequacy topic that
we are not covering in this paper. The decision between technologies il
and i2 depends critically on the definition of the prices. This latter
decision is the focus of this work. In this regard, our simple example
also shows that the adequacy problem and the price computation
problem are different.

Using the results from the cost-minimization problem, let us
analyze the impact of different pricing alternatives on the investment
incentives. We will start by testing the "price equal to the variable cost
of the marginal unit" assumption.

3.4.1. Price equal to the variable cost of the marginal unit
For the cases where the generator is at its maximum capacity, so the

Table 4
Economic results for the "price equal to the variable cost of the marginal unit" pricing
rule.

tl t2 t3 t4 t5 t6 t7 t8
Price ($/MWh) 500 500 60 0 60 60 20 20
Side payment il ($/MW) 0 0 0 0 70 0 0 0
Side payment i2 ($/MW) 0 0 0 20 0 0 0 0
Total revenue il ($) 348,000
Total revenue i2 ($) 612,000
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Market results for the "price equal to the variable cost of the marginal unit" pricing rule
and the technology mix adapted to it.

tl t2 t3 t4 t5 t6 t7 t8
Price ($/MWh) 500 500 60 0 60 60 60 20
Side payment i1 ($/MW) 0 0 0 60 0 0 0 0
Side payment i2 ($/MW) 0 0 0 0 60 0 0 0
Total revenue il ($) 609,000
Total revenue i2 ($) 394,000

marginal cost is undefined, we use the convention of choosing the price
of the next unit. When we set prices to the variable cost of the marginal
unit, we obtain the market results in Table 4.

By comparing Tables 3,4, we observe that market results imply that
generator i2 is under-remunerated in this scheme (it is receiving 612 k
$ while its total operation+investment costs are 640 k$). From an
investment point of view, these market results mean that investments
in technology i2 are less profitable tan required. Consequently, market
players would tend to build less capacity of this kind, which in turn
implies that the generation mix would adapt in response to the
economic signals contained in the prices.

The next step thus is to analyze the generation mix induced by the
price signals defined by market prices. The new generation mix that
arises with those prices is shown in Table 5.

As before, we calculate the market results corresponding to the
technology mix in Table 6.

Note that the prices corresponding to the new technology mix are
the same but side payments change. Generator i2 has decreased its
installed capacity as a response to prices. This allows her to capture
higher prices and compensate for the previous under-remuneration.
Both generators receive their full costs.” We observe that total costs in
Table 6 are higher than total costs in the global solution (Table 3). This
means that the generation mix that has been induced by the "price
equal to the variable cost of the marginal unit" pricing rule is not
optimal, and is more expensive for consumers than the ideal one. The
modifications in the technology mix induced by these prices have

2 If our example had a larger number of hours, total revenues in Table 5 would be
equal to total costs in Table 6; small errors remain due to the simple nature of the
example.
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Table 7

Market results for the pricing rule proposed in this paper.

tl t2 t3 t4 t5 t6 t7 t8
Price ($/MWh) 500 500 60 -115 130 60 60 20
Side payment il ($) 7000
Side payment i2 ($) 0
Total revenue il ($) 348,000
Total revenue i2 ($) 640,000

increased total costs; this pricing rule is failing to minimize costs and
should not be adopted. These differences in the investments decisions
come from the fact that the global optimization is detecting that an
additional megawatt from technology i2 reduces the expenses in
variable costs from the marginal unit, but also part of the start-up
cost of other generators. With the "price equal to the variable cost of
the marginal unit" pricing rule, only the savings in variable costs are
considered for the investment decisions, as the rest of the costs are
included in the side-payments and does not have an influence in the
remuneration of the base-load generators.

3.4.2. Price equal to the price proposed in this paper

In order to understand the basic characteristics of the price
proposal developed in this paper, let us consider again the technology
mix obtained from the global optimization described in Table 3. Using
that technology mix, we calculate the market results corresponding to a
price definition as the one proposed in Section 3.3, which are shown in
Table 7.

Comparing to the costs in Table 3, both generators recover their
investment costs, so neither of them regret their investment decisions.”
This set of prices induces generators to build the ideal capacity mix and
is therefore optimal from the investment point of view.

Comparing to the prices in Table 6, one of the most relevant
changes is the inclusion of the start-up cost of generator i1 in the price
of hour 5. Since the plant is starting-up in that hour, and commitment
variable are continuous, the costs of the start-up is included into the
marginal cost. This allows for an additional remuneration for plant i2,
as the start-up cost moves from the side payment to the marginal price.
And this is a price signal for the baseload generator, pointing out that
an additional investment in technology i2 would also save the start-up
costs of i1. Besides, the price in 74 is modified to reflect the willingness
of generator il to avoid shutting down during that hour. In effect, if
there were an additional megawatt of demand in hour 74, generator il
could produce one megawatt of its minimum stable load, which means
committing 1/0.4 MW, and thus saving 175 $/MW in avoided start-
ups during the following hour. Its total savings would be lower, since it
would have to spend 60 $/MWh in variable costs, so she finally is
willing to pay 175-60=115 $/MWh for producing in hour 74. This is the
marginal cost that sets the price in this hour (Table 7).

4. Discussion

We have moved from a unit commitment problem with binary
variables, where prices could not be computed in a straight-forward
way, to a linear problem with a convex cost function, where prices are
easy to compute; and we have been able to do so by leveraging on the
idea of flexible capacity additions. We are assuming that in the long run
it is possible to add capacity of any size. Start-up costs, which are quasi-
fixed if the plant is already built, evolve in a continuous way as installed
capacity increases, and this feature allows us to compute a marginal
cost that reflects the costs related to start-up variables and, in general,
with binary variables.

3 Again, if our example had a larger number of hours, total revenues would be exactly
equal to total costs.
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Intuitively, having start-up costs (and other similar costs related to
binary variables) included into the price is required in order to have
correct expansion decisions in base-load generation. Otherwise, the net
income perceived in the market by base-load generators -which would
not include the start-up costs of the marginal generator- would be
lower that the savings in operational costs that the existence of those
base-load plants brings to the system throughout the year -which does
include to some extent start-up costs-, and therefore base-load
generation would be underinvested.

Among the various potential alternative pricing schemes that
somehow include start-up costs in their prices, we are proposing a
particular one, constructed upon the scalable generators assumption.
We are not implying that continuous capacity additions are actually
feasible, but we are considering that the scenario with all of the
capacities perfectly adapted to demand -i.e., plants of any size are built
if required to achieve least-cost supply- is our reference scenario. It is
not a realistic expansion plan; it is an ideal one intended to be used as
an investment signal. Our pricing proposal is thus devised to provide
long-term signals that encourage investors, when deciding their
capacity additions, to approach as much as possible to this reference
generation capacity mix. This is an extra feature, when compared with
most pricing options in the literature, which do not care about
investment, and is in line with the assumptions used in the standard
case with no binary variables, see Caramanis (1982) for instance. In
effect, investment incentives in the standard model are also based on a
perfectly-adapted capacity mix, to which investors try to approach,
which is a non-realistic aspirational scenario; among other idealiza-
tions, it ignores that many generators are already in operation.

Comparing our findings with the proposals in the literature, a first
conclusion is that the alternatives in the line of O'Neill et al. (2005) are
not good investment signals, since their prices do not include any cost
related to binary variables. They will tend to lead to underinvestment in
base-load generators.

Formally, our proposal is similar to other linear models, such as the
dispatchable model of Gribik et al. (2007). However, one of the
implications of the reasoning we have used to derive our pricing
scheme, as a long-term signal, is that it provides us with a very precise
way of relaxing the integrality conditions of the binary variables in the
unit commitment. The scalable generators assumption, which ema-
nates directly from the long-term analysis, implies that all of the
technical characteristics of any certain generator have to be scaled up
or down when a partial commitment decision is determined. Other
linear problems that are not defined under this condition may fail to
reflect the impact of linear commitment variables in the overall
behavior of the plants and thus may result in prices that are
substantially different from our proposal. These kind of issues might
explain some of the results described by Gribik et al. (2007) about their
dispatchable model.

In fact, the prices we are proposing are closer to those of the convex
hull in Gribik et al. (2007). Hogan (2014) points out that the
dispatchable model yields prices that are workable approximations to
the convex hull prices. Our intuition is that both prices would be
identical if our scalable-generators linear problem were used instead of
the dispatchable model that (Gribik et al., 2007) are considering.
Though we have failed to find an example of a dispatch situation where
the two solutions differ, we do not have a formal proof yet. In any case,
our results tend to reinforce the convex hull approach, both by
providing a stronger motivation -the idea of providing optimal long
term signals is in our view more solid that just minimizing uplifts- and
by defining a simpler method for price computation.

Finally, our discussion is connected with the critique in Scarf
(1994) to the analysis of optimality based on marginal costs when
there are discrete variables (indivisibilities in his naming). He points
out that the result of the problem with binary variables is different from
the result of the linear problem, so dispatch cannot be determined just
by using the linear model. This is straight-forward in our case: some
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more expensive units may come on line if they fit better with demand
size. Our two-steps process is intended to provide a solution for this
situation; whenever (Scarf, 1994) critique holds, the price-setting
generator will be different from the most expensive unit in operation.
Using the unit commitment problem for dispatching ensures that the
best solution is always adopted. On top of that, we add a pricing
scheme, where the extra-costs derived from the size feature are not
paid to all of the infra-marginal generators, but only to those plants
that were called to produce due to their adequate size. In the Scarf
(1994) example, where only the high tech plant should be constructed
when demand is very high, our pricing proposal would result in a
market price that is determined by the cost of the high tech plant, and if
some smokestack plant were required, the additional income would be
provided as a side payment.

5. Conclusions and policy implications

This paper discusses the question of which pricing mechanism
should be used for day-ahead electricity auctions in the presence of
binary variables. In general, the pricing methods in the literature are
concerned with satisfying short-term competitive equilibrium condi-
tions and ensuring that, once prices are known, all of the generators are
willing to produce (or not) according to the volumes determined by the
optimal dispatch. Our analysis shows that it is not possible to reach to a
conclusion using only this short-term competitive equilibrium condi-
tion: if a pure marginal price is used, then there is no price that satisfies
the equilibrium condition; but if an additional side payment is
included, then any price could be a competitive equilibrium.

We propose to add a second criterion to help with the discussion:
prices have to be also signals for generation expansion. Therefore, we
propose to design prices with the objective of providing investors with
the incentives to build new capacity in such a way that the generation
equipment is as close as possible to the ideal perfectly-adapted capacity
mix.

Using this condition, we arrive to a single solution to the pricing
problem, where prices are computed as the shadow prices of the
balance equations in a linear version of the unit commitment problem.

Importantly, not every linearization of the unit commitment
provides the prices we are describing. In order to attain the optimal
long-term signals, modelling of the linear model has to be done
according to the notion of scalable generators, ensuring that all of
the technical characteristics of the generators are scaled up or down
when a partial commitment decision is determined, as if the model
were using a generator that is completely equal to the original one but
just smaller.

The pricing scheme proposed provides incentives to build new
capacity that are sensible. It is, in our view, a reasonable approach to
the problem of designing prices that are optimal long-term signals. The
solution proposed is substantially different from the prices in O’Neill
et al. (2005) and is close to the convex hull pricing of Gribik et al.
(2007). Compared to the later, our results provide a stronger motiva-
tion for the pricing scheme (the idea of providing optimal long term
signals) and a simpler method for price computation.

5.1. Implications for power market design

Short-run marginal cost is a central coordination mechanism. It
defines the dispatch and remuneration of power plants, so it defines
also long-run decisions. One of the problems where the study of short-
run marginal costs is relevant is the design of day-ahead power
auctions. In that context, there is a fundamental difference among
market designs: who decides the short-run marginal cost. The question
can be cast in terms of auction design: depending on the clearing
methodology, the coordination responsibility, or equivalently the
responsibility of defining the short-run marginal cost, rests with the
auctioneer or with the auction participants. Most US systems rely on a
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short-run marginal cost defined by the auctioneer. Most of EU systems
rely on power producers to define their own short-run marginal cost.
Most Latin American countries rely on the system operator. From that
viewpoint, this paper have been largely devoted to calculating short-
run marginal costs in purely complex auctions, i.e. auctions where
marginal costs are defined by the auctioneer. Nonetheless, the logic
could be applied to sequential auctions with complex rules, as the EU
ones. Besides, most EU markets have some kind of complex rules. The
block bids adopted in NordPool and EEX or the minimum-income
conditions of the Spanish pool are examples.

From a general point of view, the choice between complex and
sequential auctions implies trade-offs. The immediate advantage of
these mechanisms is that they capture the inter-relation of the different
hours and eliminates the need for internalization. On the negative side,
their complexity makes their results difficult to explain and this may
raise some credibility problems. Besides, eliminating the need for
internalization of power producers means that the associated risk is
borne by the auctioneer, which is typically equivalent to being borne by
consumers. The auctioneers have more information than individual
power plants about the system costs. However, the auctioneer must
decide before realization of demand evolution over the next hours. The
trade-offs associated with each solution are not clear and need to be
investigated carefully. In any case, the results obtained in this paper
need to be taken into account in either case. In particular, including
complex rules in sequential auctions, as we have shown, need to
consider that prices will be redefined accordingly.

Moreover, the impact of short-run marginal costs on long-run
decisions (investment) can be a direct or an indirect one. The indirect
link between short- and long-term markets is established through the
expectation on short-term market results, i.e., potential investors
calculate their expected cash flows using short-term marginal costs.
But there might be also a direct link, as the one present in markets
based on long-term auctions. This is of significant relevance for
markets including capacity mechanisms. An extreme case of this is
the Brazilian power market, where the market is built around a long-
term Power Purchase Agreement that is allocated through long-term
auctions. The system operation (including generation assets) is the
responsibility of a central operator. In that context, there is no short-
run price to define. However, the need for a short-run marginal cost
signal remains. In fact, in the Brazilian system, one of the components
of the index that decides the auction winners (the ICB, Cost-Benefit
Index in Portuguese) is precisely the CMO (Operation Marginal Cost in
Portuguese). That operation marginal cost (actually, several scenarios
of it) is calculated by the system operator and received by auction
participants in order to prepare their bids for Power Purchase
Agreements. Therefore, even in long-run-only markets the need for
defining short-run marginal costs remains.* Therefore, the main
objective of this paper is to contribute to the discussion of the
economics of electricity short-run marginal costs. The importance of
this definition can be justified from two viewpoints: it may be needed to
calculate the auction price (if we consider the system marginal cost) or
to place bids in an auction (if we consider a producer's portfolio
marginal cost).
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Appendix A

In this appendix we show formally the relationship between the dual variable 2,°" and the market price. Specifically, we show that a market with
a price equal to 4" has the same long-term incentives as a global cost-minimization problem under the same hypotheses.

To that end, we begin by considering the global optimization problem defined in problem (4), which is the critical element of our derivation of a
mechanism for price computation. The optimality condition for x; in problem (4) is CI; = ¥, 47", assuming that generally 24" = 0. In other words,
the model will keep investing in technology i until the savings in operational costs caused by the installation of one additional megawatt of
technology i throughout the model horizon (¥, 1,7"“") are equal to the investment cost of that additional unit of capacity (CI).

We can transform problem (4), using Benders decomposition, into the following two problems:

min Y, Clx; + 0(x))

(A1)
* .
6(x,") = min (8, ; + chu,; + cay,y)
g.u,v,w .
N
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. e, =d) g
i
min max min max
ut,ig,' S g,,,' S ut,ig,' /1!,1' ’ /‘Lti
— online
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* umin umax
0<u,; <x A A (A2)

where 6 is the total operational cost of the system. For every set of generation plants (x;*), problem (A2) computes a value for the minimum
operation cost that can be attained with that capacity mix. x;" is fixed in problem (A2). Then, the master problem (A1) decides the optimal values of
x;, considering investment costs and the impact of capacity decisions on the operational costs. The optimality condition for x; in problem (A1) is
Cl, = ZTF-)- =Y, 4, the same as in problem (4). Therefore, the combination of problems (A1) and (A2) leads to the same investment solution as
problelln (4). This is also true for operational decisions.

Furthermore, we can operate in problem (A2) by relaxing the first constraint and dualizing it. Then, arranging some terms, problems (A1) and
(A2) can be expressed as follows:

max Y. 0(x;) — Clx;

(A3)
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Here 6 is interpreted as the total operational profits of the generators. , is the market price at time ¢. These two problems (A3) and (A4) replicate
in format the decision structure in a competitive market: generators determine their operational variables (production, start-up, etc.) with the aim
of maximizing the net income they receive from the market (income minus cost), which is represented by problem (A4); on the other hand, firms
decide their capacity by maximizing their expected revenue (market net revenue minus investment costs), which is represented by problem (A3).
Both problems (A3) and (A4) could be decomposed into several smaller ones, one for each market player i.

Problem (A4) is only equivalent to problem (A2) if the price in problem (A4) z, is equal to the shadow price of the balance equation in problem
(A2) /I,d“””. In effect, since problem (A4) is constructed by relaxing the balance equation in problem (A2), this condition is required for the relaxation
to provide the same results as the non-relaxed problem (Minoux and Vajda, 1986). Therefore, if 7, = /1[‘1”" holds, then all of the shadow prices in
(A4) are equal to those in (A2) and both problems are equivalent. As a consequence, if this condition held, the optimality for x; in problem (A4)

0

would be CI, = = Ztﬂ,f‘,-'”‘”‘, which would be the same as in problem (A1), which was in turn equivalent to that in (4). In other words, for the

market to provide incentives for the generators to invest in such a way that the capacity mix approaches as much as possible to the reference mix
defined in Section 3.2, prices have to be computed as the shadow prices of the balance constraints in problem (A2), 2.%".
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